Function reference
-
recipes-package
recipes
- recipes: A package for computing and preprocessing design matrices.
-
recipe()
- Create a recipe for preprocessing data
-
formula(<recipe>)
- Create a formula from a prepared recipe
-
print(<recipe>)
- Print a Recipe
-
summary(<recipe>)
- Summarize a recipe
-
prep()
- Estimate a preprocessing recipe
-
bake()
- Apply a trained preprocessing recipe
-
juice()
- Extract transformed training set
-
selections
selection
- Methods for selecting variables in step functions
-
has_role()
has_type()
all_outcomes()
all_predictors()
all_date()
all_date_predictors()
all_datetime()
all_datetime_predictors()
all_double()
all_double_predictors()
all_factor()
all_factor_predictors()
all_integer()
all_integer_predictors()
all_logical()
all_logical_predictors()
all_nominal()
all_nominal_predictors()
all_numeric()
all_numeric_predictors()
all_ordered()
all_ordered_predictors()
all_string()
all_string_predictors()
all_unordered()
all_unordered_predictors()
current_info()
- Role Selection
-
add_role()
update_role()
remove_role()
- Manually alter roles
-
update_role_requirements()
- Update role specific requirements
-
get_case_weights()
averages()
medians()
variances()
correlations()
covariances()
pca_wts()
are_weights_used()
- Helpers for steps with case weights
-
case_weights
- Using case weights with recipes
-
step_impute_bag()
imp_vars()
- Impute via bagged trees
-
step_impute_knn()
- Impute via k-nearest neighbors
-
step_impute_linear()
- Impute numeric variables via a linear model
-
step_impute_lower()
- Impute numeric data below the threshold of measurement
-
step_impute_mean()
- Impute numeric data using the mean
-
step_impute_median()
- Impute numeric data using the median
-
step_impute_mode()
- Impute nominal data using the most common value
-
step_impute_roll()
- Impute numeric data using a rolling window statistic
-
step_unknown()
- Assign missing categories to "unknown"
-
step_BoxCox()
- Box-Cox transformation for non-negative data
-
step_bs()
- B-spline basis functions
-
step_harmonic()
- Add sin and cos terms for harmonic analysis
-
step_hyperbolic()
- Hyperbolic transformations
-
step_inverse()
- Inverse transformation
-
step_invlogit()
- Inverse logit transformation
-
step_log()
- Logarithmic transformation
-
step_logit()
- Logit transformation
-
step_mutate()
- Add new variables using dplyr
-
step_ns()
- Natural spline basis functions
-
step_poly()
- Orthogonal polynomial basis functions
-
step_poly_bernstein()
- Generalized bernstein polynomial basis
-
step_relu()
- Apply (smoothed) rectified linear transformation
-
step_spline_b()
- Basis splines
-
step_spline_convex()
- Convex splines
-
step_spline_monotone()
- Monotone splines
-
step_spline_natural()
- Natural splines
-
step_spline_nonnegative()
- Non-negative splines
-
step_sqrt()
- Square root transformation
-
step_YeoJohnson()
- Yeo-Johnson transformation
-
step_discretize()
- Discretize Numeric Variables
-
discretize()
predict(<discretize>)
- Discretize Numeric Variables
-
step_cut()
- Cut a numeric variable into a factor
-
step_bin2factor()
- Create a factors from A dummy variable
-
step_count()
- Create counts of patterns using regular expressions
-
step_dummy()
- Create traditional dummy variables
-
step_dummy_extract()
- Extract patterns from nominal data
-
step_dummy_multi_choice()
- Handle levels in multiple predictors together
-
step_factor2string()
- Convert factors to strings
-
step_indicate_na()
- Create missing data column indicators
-
step_integer()
- Convert values to predefined integers
-
step_novel()
- Simple value assignments for novel factor levels
-
step_num2factor()
- Convert numbers to factors
-
step_ordinalscore()
- Convert ordinal factors to numeric scores
-
step_other()
- Collapse infrequent categorical levels
-
step_percentile()
- Percentile transformation
-
step_regex()
- Detect a regular expression
-
step_relevel()
- Relevel factors to a desired level
-
step_string2factor()
- Convert strings to factors
-
step_unknown()
- Assign missing categories to "unknown"
-
step_unorder()
- Convert ordered factors to unordered factors
-
step_date()
- Date feature generator
-
step_time()
- Time feature generator
-
step_holiday()
- Holiday feature generator
-
step_interact()
- Create interaction variables
-
step_center()
- Centering numeric data
-
step_normalize()
- Center and scale numeric data
-
step_range()
- Scaling numeric data to a specific range
-
step_scale()
- Scaling numeric data
-
step_classdist()
- Distances to class centroids
-
step_classdist_shrunken()
- Compute shrunken centroid distances for classification models
-
step_depth()
- Data depths
-
step_geodist()
- Distance between two locations
-
step_ica()
- ICA signal extraction
-
step_isomap()
- Isomap embedding
-
step_kpca()
- Kernel PCA signal extraction
-
step_kpca_poly()
- Polynomial kernel PCA signal extraction
-
step_kpca_rbf()
- Radial basis function kernel PCA signal extraction
-
step_mutate_at()
- Mutate multiple columns using dplyr
-
step_nnmf()
- Non-negative matrix factorization signal extraction
-
step_nnmf_sparse()
- Non-negative matrix factorization signal extraction with lasso penalization
-
step_pca()
- PCA signal extraction
-
step_pls()
- Partial least squares feature extraction
-
step_ratio()
denom_vars()
- Ratio variable creation
-
step_spatialsign()
- Spatial sign preprocessing
-
step_corr()
- High correlation filter
-
step_filter_missing()
- Missing value column filter
-
step_lincomb()
- Linear combination filter
-
step_nzv()
- Near-zero variance filter
-
step_rm()
- General variable filter
-
step_select()
- Select variables using dplyr
-
step_zv()
- Zero variance filter
-
step_arrange()
- Sort rows using dplyr
-
step_filter()
- Filter rows using dplyr
-
step_lag()
- Create a lagged predictor
-
step_naomit()
- Remove observations with missing values
-
step_impute_roll()
- Impute numeric data using a rolling window statistic
-
step_sample()
- Sample rows using dplyr
-
step_shuffle()
- Shuffle variables
-
step_slice()
- Filter rows by position using dplyr
-
step_intercept()
- Add intercept (or constant) column
-
step_profile()
- Create a profiling version of a data set
-
step_rename()
- Rename variables by name using dplyr
-
step_rename_at()
- Rename multiple columns using dplyr
-
step_window()
- Moving window functions
-
check_class()
- Check variable class
-
check_cols()
- Check if all columns are present
-
check_missing()
- Check for missing values
-
check_new_values()
- Check for new values
-
check_range()
- Check range consistency
-
developer_functions
- Developer functions for creating recipes steps
-
add_step()
add_check()
- Add a New Operation to the Current Recipe
-
detect_step()
- Detect if a particular step or check is used in a recipe
-
fully_trained()
- Check to see if a recipe is trained/prepared
-
.get_data_types()
- Get types for use in recipes
-
names0()
dummy_names()
dummy_extract_names()
- Naming Tools
-
prepper()
- Wrapper function for preparing recipes within resampling
-
recipes_eval_select()
- Evaluate a selection with tidyselect semantics specific to recipes
-
recipes_extension_check()
- Checks that steps have all S3 methods
-
recipes_ptype()
- Prototype of recipe object
-
recipes_ptype_validate()
- Validate prototype of recipe object
-
recipes_names_predictors()
recipes_names_outcomes()
- Role indicators
-
update(<step>)
- Update a recipe step
-
tidy(<step_BoxCox>)
tidy(<step_YeoJohnson>)
tidy(<step_arrange>)
tidy(<step_bin2factor>)
tidy(<step_bs>)
tidy(<step_center>)
tidy(<check_class>)
tidy(<step_classdist>)
tidy(<step_classdist_shrunken>)
tidy(<check_cols>)
tidy(<step_corr>)
tidy(<step_count>)
tidy(<step_cut>)
tidy(<step_date>)
tidy(<step_depth>)
tidy(<step_discretize>)
tidy(<step_dummy>)
tidy(<step_dummy_extract>)
tidy(<step_dummy_multi_choice>)
tidy(<step_factor2string>)
tidy(<step_filter>)
tidy(<step_filter_missing>)
tidy(<step_geodist>)
tidy(<step_harmonic>)
tidy(<step_holiday>)
tidy(<step_hyperbolic>)
tidy(<step_ica>)
tidy(<step_impute_bag>)
tidy(<step_impute_knn>)
tidy(<step_impute_linear>)
tidy(<step_impute_lower>)
tidy(<step_impute_mean>)
tidy(<step_impute_median>)
tidy(<step_impute_mode>)
tidy(<step_impute_roll>)
tidy(<step_indicate_na>)
tidy(<step_integer>)
tidy(<step_interact>)
tidy(<step_intercept>)
tidy(<step_inverse>)
tidy(<step_invlogit>)
tidy(<step_isomap>)
tidy(<step_kpca>)
tidy(<step_kpca_poly>)
tidy(<step_kpca_rbf>)
tidy(<step_lag>)
tidy(<step_lincomb>)
tidy(<step_log>)
tidy(<step_logit>)
tidy(<check_missing>)
tidy(<step_mutate>)
tidy(<step_mutate_at>)
tidy(<step_naomit>)
tidy(<check_new_values>)
tidy(<step_nnmf>)
tidy(<step_nnmf_sparse>)
tidy(<step_normalize>)
tidy(<step_novel>)
tidy(<step_ns>)
tidy(<step_num2factor>)
tidy(<step_nzv>)
tidy(<step_ordinalscore>)
tidy(<step_other>)
tidy(<step_pca>)
tidy(<step_percentile>)
tidy(<step_pls>)
tidy(<step_poly>)
tidy(<step_poly_bernstein>)
tidy(<step_profile>)
tidy(<step_range>)
tidy(<check_range>)
tidy(<step_ratio>)
tidy(<step_regex>)
tidy(<step_relevel>)
tidy(<step_relu>)
tidy(<step_rename>)
tidy(<step_rename_at>)
tidy(<step_rm>)
tidy(<step_sample>)
tidy(<step_scale>)
tidy(<step_select>)
tidy(<step_shuffle>)
tidy(<step_slice>)
tidy(<step_spatialsign>)
tidy(<step_spline_b>)
tidy(<step_spline_convex>)
tidy(<step_spline_monotone>)
tidy(<step_spline_natural>)
tidy(<step_spline_nonnegative>)
tidy(<step_sqrt>)
tidy(<step_string2factor>)
tidy(<recipe>)
tidy(<step>)
tidy(<check>)
tidy(<step_time>)
tidy(<step_unknown>)
tidy(<step_unorder>)
tidy(<step_window>)
tidy(<step_zv>)
- Tidy the result of a recipe