
Package index
-
recipes-packagerecipes - recipes: A package for computing and preprocessing design matrices.
-
recipe() - Create a recipe for preprocessing data
-
formula(<recipe>) - Create a formula from a prepared recipe
-
print(<recipe>) - Print a Recipe
-
summary(<recipe>) - Summarize a recipe
-
prep() - Estimate a preprocessing recipe
-
bake() - Apply a trained preprocessing recipe
-
juice()superseded - Extract transformed training set
-
selectionsselection - Methods for selecting variables in step functions
-
has_role()has_type()all_outcomes()all_predictors()all_date()all_date_predictors()all_datetime()all_datetime_predictors()all_double()all_double_predictors()all_factor()all_factor_predictors()all_integer()all_integer_predictors()all_logical()all_logical_predictors()all_nominal()all_nominal_predictors()all_numeric()all_numeric_predictors()all_ordered()all_ordered_predictors()all_string()all_string_predictors()all_unordered()all_unordered_predictors()current_info() - Role Selection
-
add_role()update_role()remove_role() - Manually alter roles
-
update_role_requirements() - Update role specific requirements
-
get_case_weights()averages()medians()variances()correlations()covariances()pca_wts()are_weights_used() - Helpers for steps with case weights
-
case_weights - Using case weights with recipes
-
step_impute_bag()imp_vars() - Impute via bagged trees
-
step_impute_knn() - Impute via k-nearest neighbors
-
step_impute_linear() - Impute numeric variables via a linear model
-
step_impute_lower() - Impute numeric data below the threshold of measurement
-
step_impute_mean() - Impute numeric data using the mean
-
step_impute_median() - Impute numeric data using the median
-
step_impute_mode() - Impute nominal data using the most common value
-
step_impute_roll() - Impute numeric data using a rolling window statistic
-
step_unknown() - Assign missing categories to "unknown"
-
step_BoxCox() - Box-Cox transformation for non-negative data
-
step_bs() - B-spline basis functions
-
step_harmonic() - Add sin and cos terms for harmonic analysis
-
step_hyperbolic() - Hyperbolic transformations
-
step_inverse() - Inverse transformation
-
step_invlogit() - Inverse logit transformation
-
step_log() - Logarithmic transformation
-
step_logit() - Logit transformation
-
step_mutate() - Add new variables using dplyr
-
step_ns() - Natural spline basis functions
-
step_poly() - Orthogonal polynomial basis functions
-
step_poly_bernstein() - Generalized bernstein polynomial basis
-
step_relu() - Apply (smoothed) rectified linear transformation
-
step_spline_b() - Basis splines
-
step_spline_convex() - Convex splines
-
step_spline_monotone() - Monotone splines
-
step_spline_natural() - Natural splines
-
step_spline_nonnegative() - Non-negative splines
-
step_sqrt() - Square root transformation
-
step_YeoJohnson() - Yeo-Johnson transformation
-
step_discretize() - Discretize Numeric Variables
-
discretize()predict(<discretize>) - Discretize Numeric Variables
-
step_cut() - Cut a numeric variable into a factor
-
step_bin2factor() - Create a factors from A dummy variable
-
step_count() - Create counts of patterns using regular expressions
-
step_dummy() - Create traditional dummy variables
-
step_dummy_extract() - Extract patterns from nominal data
-
step_dummy_multi_choice() - Handle levels in multiple predictors together
-
step_factor2string() - Convert factors to strings
-
step_indicate_na() - Create missing data column indicators
-
step_integer() - Convert values to predefined integers
-
step_novel() - Simple value assignments for novel factor levels
-
step_num2factor() - Convert numbers to factors
-
step_ordinalscore() - Convert ordinal factors to numeric scores
-
step_other() - Collapse infrequent categorical levels
-
step_percentile() - Percentile transformation
-
step_regex() - Detect a regular expression
-
step_relevel() - Relevel factors to a desired level
-
step_string2factor() - Convert strings to factors
-
step_unknown() - Assign missing categories to "unknown"
-
step_unorder() - Convert ordered factors to unordered factors
-
step_date() - Date feature generator
-
step_time() - Time feature generator
-
step_holiday() - Holiday feature generator
-
step_interact() - Create interaction variables
-
step_center() - Centering numeric data
-
step_normalize() - Center and scale numeric data
-
step_range() - Scaling numeric data to a specific range
-
step_scale() - Scaling numeric data
-
step_classdist() - Distances to class centroids
-
step_classdist_shrunken() - Compute shrunken centroid distances for classification models
-
step_depth() - Data depths
-
step_geodist() - Distance between two locations
-
step_ica() - ICA signal extraction
-
step_isomap() - Isomap embedding
-
step_kpca() - Kernel PCA signal extraction
-
step_kpca_poly() - Polynomial kernel PCA signal extraction
-
step_kpca_rbf() - Radial basis function kernel PCA signal extraction
-
step_mutate_at()superseded - Mutate multiple columns using dplyr
-
step_nnmf()deprecated - Non-negative matrix factorization signal extraction
-
step_nnmf_sparse() - Non-negative matrix factorization signal extraction with lasso penalization
-
step_pca() - PCA signal extraction
-
step_pls() - Partial least squares feature extraction
-
step_ratio()denom_vars() - Ratio variable creation
-
step_spatialsign() - Spatial sign preprocessing
-
step_corr() - High correlation filter
-
step_filter_missing() - Missing value column filter
-
step_lincomb() - Linear combination filter
-
step_nzv() - Near-zero variance filter
-
step_rm() - General variable filter
-
step_select()deprecated - Select variables using dplyr
-
step_zv() - Zero variance filter
-
step_arrange() - Sort rows using dplyr
-
step_filter() - Filter rows using dplyr
-
step_lag() - Create a lagged predictor
-
step_naomit() - Remove observations with missing values
-
step_impute_roll() - Impute numeric data using a rolling window statistic
-
step_sample() - Sample rows using dplyr
-
step_shuffle() - Shuffle variables
-
step_slice() - Filter rows by position using dplyr
-
step_intercept() - Add intercept (or constant) column
-
step_profile() - Create a profiling version of a data set
-
step_rename() - Rename variables by name using dplyr
-
step_rename_at() - Rename multiple columns using dplyr
-
step_window() - Moving window functions
-
check_class() - Check variable class
-
check_cols() - Check if all columns are present
-
check_missing() - Check for missing values
-
check_new_values() - Check for new values
-
check_range() - Check range consistency
-
developer_functions - Developer functions for creating recipes steps
-
add_step()add_check() - Add a New Operation to the Current Recipe
-
detect_step() - Detect if a particular step or check is used in a recipe
-
fully_trained() - Check to see if a recipe is trained/prepared
-
.get_data_types() - Get types for use in recipes
-
names0()dummy_names()dummy_extract_names() - Naming Tools
-
prepper() - Wrapper function for preparing recipes within resampling
-
recipes_argument_select() - Evaluate a selection with tidyselect semantics for arguments
-
recipes_eval_select() - Evaluate a selection with tidyselect semantics specific to recipes
-
recipes_extension_check() - Checks that steps have all S3 methods
-
recipes_ptype() - Prototype of recipe object
-
recipes_ptype_validate() - Validate prototype of recipe object
-
recipes_names_predictors()recipes_names_outcomes() - Role indicators
-
sparse_data - Using sparse data with recipes
-
update(<step>) - Update a recipe step
-
tidy(<step_BoxCox>)tidy(<step_YeoJohnson>)tidy(<step_arrange>)tidy(<step_bin2factor>)tidy(<step_bs>)tidy(<step_center>)tidy(<check_class>)tidy(<step_classdist>)tidy(<step_classdist_shrunken>)tidy(<check_cols>)tidy(<step_corr>)tidy(<step_count>)tidy(<step_cut>)tidy(<step_date>)tidy(<step_depth>)tidy(<step_discretize>)tidy(<step_dummy>)tidy(<step_dummy_extract>)tidy(<step_dummy_multi_choice>)tidy(<step_factor2string>)tidy(<step_filter>)tidy(<step_filter_missing>)tidy(<step_geodist>)tidy(<step_harmonic>)tidy(<step_holiday>)tidy(<step_hyperbolic>)tidy(<step_ica>)tidy(<step_impute_bag>)tidy(<step_impute_knn>)tidy(<step_impute_linear>)tidy(<step_impute_lower>)tidy(<step_impute_mean>)tidy(<step_impute_median>)tidy(<step_impute_mode>)tidy(<step_impute_roll>)tidy(<step_indicate_na>)tidy(<step_integer>)tidy(<step_interact>)tidy(<step_intercept>)tidy(<step_inverse>)tidy(<step_invlogit>)tidy(<step_isomap>)tidy(<step_kpca>)tidy(<step_kpca_poly>)tidy(<step_kpca_rbf>)tidy(<step_lag>)tidy(<step_lincomb>)tidy(<step_log>)tidy(<step_logit>)tidy(<check_missing>)tidy(<step_mutate>)tidy(<step_mutate_at>)tidy(<step_naomit>)tidy(<check_new_values>)tidy(<step_nnmf>)tidy(<step_nnmf_sparse>)tidy(<step_normalize>)tidy(<step_novel>)tidy(<step_ns>)tidy(<step_num2factor>)tidy(<step_nzv>)tidy(<step_ordinalscore>)tidy(<step_other>)tidy(<step_pca>)tidy(<step_percentile>)tidy(<step_pls>)tidy(<step_poly>)tidy(<step_poly_bernstein>)tidy(<step_profile>)tidy(<step_range>)tidy(<check_range>)tidy(<step_ratio>)tidy(<step_regex>)tidy(<step_relevel>)tidy(<step_relu>)tidy(<step_rename>)tidy(<step_rename_at>)tidy(<step_rm>)tidy(<step_sample>)tidy(<step_scale>)tidy(<step_select>)tidy(<step_shuffle>)tidy(<step_slice>)tidy(<step_spatialsign>)tidy(<step_spline_b>)tidy(<step_spline_convex>)tidy(<step_spline_monotone>)tidy(<step_spline_natural>)tidy(<step_spline_nonnegative>)tidy(<step_sqrt>)tidy(<step_string2factor>)tidy(<recipe>)tidy(<step>)tidy(<check>)tidy(<step_time>)tidy(<step_unknown>)tidy(<step_unorder>)tidy(<step_window>)tidy(<step_zv>) - Tidy the result of a recipe