check_class
creates a specification of a recipe check that will check if
a variable is of a designated class.
Usage
check_class(
recipe,
...,
role = NA,
trained = FALSE,
class_nm = NULL,
allow_additional = FALSE,
skip = FALSE,
class_list = NULL,
id = rand_id("class")
)
Arguments
- recipe
A recipe object. The check will be added to the sequence of operations for this recipe.
- ...
One or more selector functions to choose variables for this check. See
selections()
for more details.- role
Not used by this check since no new variables are created.
- trained
A logical for whether the selectors in
...
have been resolved byprep()
.- class_nm
A character vector that will be used in
inherits
to check the class. IfNULL
the classes will be learned inprep
. Can contain more than one class.- allow_additional
If
TRUE
a variable is allowed to have additional classes to the one(s) that are checked.- skip
A logical. Should the check be skipped when the recipe is baked by
bake()
? While all operations are baked whenprep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- class_list
A named list of column classes. This is
NULL
until computed byprep()
.- id
A character string that is unique to this check to identify it.
Value
An updated version of recipe
with the new check added to the
sequence of any existing operations.
Details
This function can check the classes of the variables in two ways. When the
class
argument is provided it will check if all the variables specified are
of the given class. If this argument is NULL
, the check will learn the
classes of each of the specified variables in prep()
. Both ways will break
bake()
if the variables are not of the requested class. If a variable has
multiple classes in prep()
, all the classes are checked. Please note that
in prep()
the argument strings_as_factors
defaults to TRUE
. If the
train set contains character variables the check will be break bake()
when
strings_as_factors
is TRUE
.
Tidying
When you tidy()
this check, a tibble with columns
terms
(the selectors or variables selected) and value
(the type)
is returned.
See also
Other checks:
check_cols()
,
check_missing()
,
check_new_values()
,
check_range()
Examples
library(dplyr)
data(Sacramento, package = "modeldata")
# Learn the classes on the train set
train <- Sacramento[1:500, ]
test <- Sacramento[501:nrow(Sacramento), ]
recipe(train, sqft ~ .) %>%
check_class(everything()) %>%
prep(train, strings_as_factors = FALSE) %>%
bake(test)
#> Warning: The `strings_as_factors` argument of `prep.recipe()` is deprecated as
#> of recipes 1.3.0.
#> ℹ Please use the `strings_as_factors` argument of `recipe()` instead.
#> # A tibble: 432 × 9
#> city zip beds baths type price latitude longitude sqft
#> <fct> <fct> <int> <dbl> <fct> <int> <dbl> <dbl> <int>
#> 1 SACRAMENTO z958… 4 2 Resi… 328578 38.6 -122. 1659
#> 2 ELK_GROVE z957… 3 3 Resi… 331000 38.4 -121. 2442
#> 3 RANCHO_CORD… z957… 4 3 Resi… 331500 38.6 -121. 2590
#> 4 SACRAMENTO z958… 4 2 Resi… 340000 38.6 -122. 2155
#> 5 SACRAMENTO z958… 3 2 Resi… 344755 38.7 -121. 1673
#> 6 SACRAMENTO z958… 3 2 Resi… 345746 38.5 -121. 1810
#> 7 ELK_GROVE z957… 4 2 Resi… 351000 38.4 -121. 2789
#> 8 GALT z956… 4 2 Resi… 353767 38.3 -121. 1606
#> 9 GALT z956… 5 3.5 Resi… 355000 38.3 -121. 3499
#> 10 SACRAMENTO z958… 4 2 Resi… 356035 38.7 -122. 2166
#> # ℹ 422 more rows
# Manual specification
recipe(train, sqft ~ .) %>%
check_class(sqft, class_nm = "integer") %>%
check_class(city, zip, type, class_nm = "factor") %>%
check_class(latitude, longitude, class_nm = "numeric") %>%
prep(train, strings_as_factors = FALSE) %>%
bake(test)
#> # A tibble: 432 × 9
#> city zip beds baths type price latitude longitude sqft
#> <fct> <fct> <int> <dbl> <fct> <int> <dbl> <dbl> <int>
#> 1 SACRAMENTO z958… 4 2 Resi… 328578 38.6 -122. 1659
#> 2 ELK_GROVE z957… 3 3 Resi… 331000 38.4 -121. 2442
#> 3 RANCHO_CORD… z957… 4 3 Resi… 331500 38.6 -121. 2590
#> 4 SACRAMENTO z958… 4 2 Resi… 340000 38.6 -122. 2155
#> 5 SACRAMENTO z958… 3 2 Resi… 344755 38.7 -121. 1673
#> 6 SACRAMENTO z958… 3 2 Resi… 345746 38.5 -121. 1810
#> 7 ELK_GROVE z957… 4 2 Resi… 351000 38.4 -121. 2789
#> 8 GALT z956… 4 2 Resi… 353767 38.3 -121. 1606
#> 9 GALT z956… 5 3.5 Resi… 355000 38.3 -121. 3499
#> 10 SACRAMENTO z958… 4 2 Resi… 356035 38.7 -122. 2166
#> # ℹ 422 more rows
# By default only the classes that are specified
# are allowed.
x_df <- tibble(time = c(Sys.time() - 60, Sys.time()))
x_df$time %>% class()
#> [1] "POSIXct" "POSIXt"
if (FALSE) { # \dontrun{
recipe(x_df) %>%
check_class(time, class_nm = "POSIXt") %>%
prep(x_df) %>%
bake_(x_df)
} # }
# Use allow_additional = TRUE if you are fine with it
recipe(x_df) %>%
check_class(time, class_nm = "POSIXt", allow_additional = TRUE) %>%
prep(x_df) %>%
bake(x_df)
#> # A tibble: 2 × 1
#> time
#> <dttm>
#> 1 2025-04-17 12:14:55
#> 2 2025-04-17 12:15:55