check_class
creates a specification of a recipe
check that will check if a variable is of a designated class.
Usage
check_class(
recipe,
...,
role = NA,
trained = FALSE,
class_nm = NULL,
allow_additional = FALSE,
skip = FALSE,
class_list = NULL,
id = rand_id("class")
)
Arguments
- recipe
A recipe object. The check will be added to the sequence of operations for this recipe.
- ...
One or more selector functions to choose variables for this check. See
selections()
for more details.- role
Not used by this check since no new variables are created.
- trained
A logical for whether the selectors in
...
have been resolved byprep()
.- class_nm
A character vector that will be used in
inherits
to check the class. IfNULL
the classes will be learned inprep
. Can contain more than one class.- allow_additional
If
TRUE
a variable is allowed to have additional classes to the one(s) that are checked.- skip
A logical. Should the check be skipped when the recipe is baked by
bake()
? While all operations are baked whenprep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- class_list
A named list of column classes. This is
NULL
until computed byprep()
.- id
A character string that is unique to this check to identify it.
Value
An updated version of recipe
with the new check added to the
sequence of any existing operations.
Details
This function can check the classes of the variables
in two ways. When the class
argument is provided
it will check if all the variables specified are of the
given class. If this argument is NULL
, the check will
learn the classes of each of the specified variables in prep
.
Both ways will break bake
if the variables are not of
the requested class. If a variable has multiple
classes in prep
, all the classes are checked. Please note
that in prep
the argument strings_as_factors
defaults to
TRUE
. If the train set contains character variables
the check will be break bake
when strings_as_factors
is
TRUE
.
Tidying
When you tidy()
this check, a tibble with columns
terms
(the selectors or variables selected) and value
(the type)
is returned.
See also
Other checks:
check_cols()
,
check_missing()
,
check_new_values()
,
check_range()
Examples
library(dplyr)
data(Sacramento, package = "modeldata")
# Learn the classes on the train set
train <- Sacramento[1:500, ]
test <- Sacramento[501:nrow(Sacramento), ]
recipe(train, sqft ~ .) %>%
check_class(everything()) %>%
prep(train, strings_as_factors = FALSE) %>%
bake(test)
#> # A tibble: 432 × 9
#> city zip beds baths type price latitude longitude sqft
#> <fct> <fct> <int> <dbl> <fct> <int> <dbl> <dbl> <int>
#> 1 SACRAMENTO z95834 4 2 Resi… 328578 38.6 -122. 1659
#> 2 ELK_GROVE z95757 3 3 Resi… 331000 38.4 -121. 2442
#> 3 RANCHO_CORDOVA z95742 4 3 Resi… 331500 38.6 -121. 2590
#> 4 SACRAMENTO z95833 4 2 Resi… 340000 38.6 -122. 2155
#> 5 SACRAMENTO z95838 3 2 Resi… 344755 38.7 -121. 1673
#> 6 SACRAMENTO z95828 3 2 Resi… 345746 38.5 -121. 1810
#> 7 ELK_GROVE z95757 4 2 Resi… 351000 38.4 -121. 2789
#> 8 GALT z95632 4 2 Resi… 353767 38.3 -121. 1606
#> 9 GALT z95632 5 3.5 Resi… 355000 38.3 -121. 3499
#> 10 SACRAMENTO z95835 4 2 Resi… 356035 38.7 -122. 2166
#> # ℹ 422 more rows
# Manual specification
recipe(train, sqft ~ .) %>%
check_class(sqft, class_nm = "integer") %>%
check_class(city, zip, type, class_nm = "factor") %>%
check_class(latitude, longitude, class_nm = "numeric") %>%
prep(train, strings_as_factors = FALSE) %>%
bake(test)
#> # A tibble: 432 × 9
#> city zip beds baths type price latitude longitude sqft
#> <fct> <fct> <int> <dbl> <fct> <int> <dbl> <dbl> <int>
#> 1 SACRAMENTO z95834 4 2 Resi… 328578 38.6 -122. 1659
#> 2 ELK_GROVE z95757 3 3 Resi… 331000 38.4 -121. 2442
#> 3 RANCHO_CORDOVA z95742 4 3 Resi… 331500 38.6 -121. 2590
#> 4 SACRAMENTO z95833 4 2 Resi… 340000 38.6 -122. 2155
#> 5 SACRAMENTO z95838 3 2 Resi… 344755 38.7 -121. 1673
#> 6 SACRAMENTO z95828 3 2 Resi… 345746 38.5 -121. 1810
#> 7 ELK_GROVE z95757 4 2 Resi… 351000 38.4 -121. 2789
#> 8 GALT z95632 4 2 Resi… 353767 38.3 -121. 1606
#> 9 GALT z95632 5 3.5 Resi… 355000 38.3 -121. 3499
#> 10 SACRAMENTO z95835 4 2 Resi… 356035 38.7 -122. 2166
#> # ℹ 422 more rows
# By default only the classes that are specified
# are allowed.
x_df <- tibble(time = c(Sys.time() - 60, Sys.time()))
x_df$time %>% class()
#> [1] "POSIXct" "POSIXt"
if (FALSE) {
recipe(x_df) %>%
check_class(time, class_nm = "POSIXt") %>%
prep(x_df) %>%
bake_(x_df)
}
# Use allow_additional = TRUE if you are fine with it
recipe(x_df) %>%
check_class(time, class_nm = "POSIXt", allow_additional = TRUE) %>%
prep(x_df) %>%
bake(x_df)
#> # A tibble: 2 × 1
#> time
#> <dttm>
#> 1 2024-07-05 14:28:24
#> 2 2024-07-05 14:29:24