check_class creates a specification of a recipe check that will check if
a variable is of a designated class.
Usage
check_class(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  class_nm = NULL,
  allow_additional = FALSE,
  skip = FALSE,
  class_list = NULL,
  id = rand_id("class")
)Arguments
- recipe
 A recipe object. The check will be added to the sequence of operations for this recipe.
- ...
 One or more selector functions to choose variables for this check. See
selections()for more details.- role
 Not used by this check since no new variables are created.
- trained
 A logical for whether the selectors in
...have been resolved byprep().- class_nm
 A character vector that will be used in
inheritsto check the class. IfNULLthe classes will be learned inprep. Can contain more than one class.- allow_additional
 If
TRUEa variable is allowed to have additional classes to the one(s) that are checked.- skip
 A logical. Should the check be skipped when the recipe is baked by
bake()? While all operations are baked whenprep()is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUEas it may affect the computations for subsequent operations.- class_list
 A named list of column classes. This is
NULLuntil computed byprep().- id
 A character string that is unique to this check to identify it.
Value
An updated version of recipe with the new check added to the
sequence of any existing operations.
Details
This function can check the classes of the variables in two ways. When the
class argument is provided it will check if all the variables specified are
of the given class. If this argument is NULL, the check will learn the
classes of each of the specified variables in prep(). Both ways will break
bake() if the variables are not of the requested class. If a variable has
multiple classes in prep(), all the classes are checked. Please note that
in prep() the argument strings_as_factors defaults to TRUE. If the
train set contains character variables the check will be break bake() when
strings_as_factors is TRUE.
Tidying
When you tidy() this check, a tibble with columns
terms (the selectors or variables selected) and value (the type)
is returned.
See also
Other checks:
check_cols(),
check_missing(),
check_new_values(),
check_range()
Examples
library(dplyr)
data(Sacramento, package = "modeldata")
# Learn the classes on the train set
train <- Sacramento[1:500, ]
test <- Sacramento[501:nrow(Sacramento), ]
recipe(train, sqft ~ .) |>
  check_class(everything()) |>
  prep(train, strings_as_factors = FALSE) |>
  bake(test)
#> Warning: The `strings_as_factors` argument of `prep.recipe()` is deprecated as
#> of recipes 1.3.0.
#> ℹ Please use the `strings_as_factors` argument of `recipe()` instead.
#> # A tibble: 432 × 9
#>    city         zip    beds baths type   price latitude longitude  sqft
#>    <fct>        <fct> <int> <dbl> <fct>  <int>    <dbl>     <dbl> <int>
#>  1 SACRAMENTO   z958…     4   2   Resi… 328578     38.6     -122.  1659
#>  2 ELK_GROVE    z957…     3   3   Resi… 331000     38.4     -121.  2442
#>  3 RANCHO_CORD… z957…     4   3   Resi… 331500     38.6     -121.  2590
#>  4 SACRAMENTO   z958…     4   2   Resi… 340000     38.6     -122.  2155
#>  5 SACRAMENTO   z958…     3   2   Resi… 344755     38.7     -121.  1673
#>  6 SACRAMENTO   z958…     3   2   Resi… 345746     38.5     -121.  1810
#>  7 ELK_GROVE    z957…     4   2   Resi… 351000     38.4     -121.  2789
#>  8 GALT         z956…     4   2   Resi… 353767     38.3     -121.  1606
#>  9 GALT         z956…     5   3.5 Resi… 355000     38.3     -121.  3499
#> 10 SACRAMENTO   z958…     4   2   Resi… 356035     38.7     -122.  2166
#> # ℹ 422 more rows
# Manual specification
recipe(train, sqft ~ .) |>
  check_class(sqft, class_nm = "integer") |>
  check_class(city, zip, type, class_nm = "factor") |>
  check_class(latitude, longitude, class_nm = "numeric") |>
  prep(train, strings_as_factors = FALSE) |>
  bake(test)
#> # A tibble: 432 × 9
#>    city         zip    beds baths type   price latitude longitude  sqft
#>    <fct>        <fct> <int> <dbl> <fct>  <int>    <dbl>     <dbl> <int>
#>  1 SACRAMENTO   z958…     4   2   Resi… 328578     38.6     -122.  1659
#>  2 ELK_GROVE    z957…     3   3   Resi… 331000     38.4     -121.  2442
#>  3 RANCHO_CORD… z957…     4   3   Resi… 331500     38.6     -121.  2590
#>  4 SACRAMENTO   z958…     4   2   Resi… 340000     38.6     -122.  2155
#>  5 SACRAMENTO   z958…     3   2   Resi… 344755     38.7     -121.  1673
#>  6 SACRAMENTO   z958…     3   2   Resi… 345746     38.5     -121.  1810
#>  7 ELK_GROVE    z957…     4   2   Resi… 351000     38.4     -121.  2789
#>  8 GALT         z956…     4   2   Resi… 353767     38.3     -121.  1606
#>  9 GALT         z956…     5   3.5 Resi… 355000     38.3     -121.  3499
#> 10 SACRAMENTO   z958…     4   2   Resi… 356035     38.7     -122.  2166
#> # ℹ 422 more rows
# By default only the classes that are specified
#   are allowed.
x_df <- tibble(time = c(Sys.time() - 60, Sys.time()))
x_df$time |> class()
#> [1] "POSIXct" "POSIXt" 
if (FALSE) { # \dontrun{
recipe(x_df) |>
  check_class(time, class_nm = "POSIXt") |>
  prep(x_df) |>
  bake_(x_df)
} # }
# Use allow_additional = TRUE if you are fine with it
recipe(x_df) |>
  check_class(time, class_nm = "POSIXt", allow_additional = TRUE) |>
  prep(x_df) |>
  bake(x_df)
#> # A tibble: 2 × 1
#>   time               
#>   <dttm>             
#> 1 2025-05-21 17:07:59
#> 2 2025-05-21 17:08:59
