step_date()
creates a specification of a recipe step that will convert
date data into one or more factor or numeric variables.
Usage
step_date(
recipe,
...,
role = "predictor",
trained = FALSE,
features = c("dow", "month", "year"),
abbr = TRUE,
label = TRUE,
ordinal = FALSE,
locale = clock::clock_locale()$labels,
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("date")
)
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
One or more selector functions to choose variables for this step. The selected variables should have class
Date
orPOSIXct
. Seeselections()
for more details.- role
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- features
A character string that includes at least one of the following values:
month
,dow
(day of week),doy
(day of year),week
,month
,decimal
(decimal date, e.g. 2002.197),quarter
,semester
,year
.- abbr
A logical. Only available for features
month
ordow
.FALSE
will display the day of the week as an ordered factor of character strings, such as "Sunday".TRUE
will display an abbreviated version of the label, such as "Sun".abbr
is disregarded iflabel = FALSE
.- label
A logical. Only available for features
month
ordow
.TRUE
will display the day of the week as an ordered factor of character strings, such as "Sunday."FALSE
will display the day of the week as a number.- ordinal
A logical: should factors be ordered? Only available for features
month
ordow
.- locale
Locale to be used for
month
anddow
, see locales. On Linux systems you can usesystem("locale -a")
to list all the installed locales. Can be a locales string, or aclock::clock_labels()
object. Defaults toclock::clock_locale()$labels
.- columns
A character string of the selected variable names. This field is a placeholder and will be populated once
prep()
is used.- keep_original_cols
A logical to keep the original variables in the output. Defaults to
TRUE
.- skip
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked whenprep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- id
A character string that is unique to this step to identify it.
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Details
Unlike some other steps, step_date
does not
remove the original date variables by default. Set keep_original_cols
to FALSE
to remove them.
See step_time()
if you want to calculate features that are smaller than
days.
Tidying
When you tidy()
this step, a tibble with columns
terms
(the selectors or variables selected), value
(the feature
names), and ordinal
(a logical) is returned.
When you tidy()
this step, a tibble is returned with
columns terms
, value
, ordinal
, and id
:
- terms
character, the selectors or variables selected
- value
character, the feature names
- ordinal
logical, are factors ordered
- id
character, id of this step
See also
Other dummy variable and encoding steps:
step_bin2factor()
,
step_count()
,
step_dummy()
,
step_dummy_extract()
,
step_dummy_multi_choice()
,
step_factor2string()
,
step_holiday()
,
step_indicate_na()
,
step_integer()
,
step_novel()
,
step_num2factor()
,
step_ordinalscore()
,
step_other()
,
step_regex()
,
step_relevel()
,
step_string2factor()
,
step_time()
,
step_unknown()
,
step_unorder()
Examples
library(lubridate)
#>
#> Attaching package: ‘lubridate’
#> The following objects are masked from ‘package:base’:
#>
#> date, intersect, setdiff, union
examples <- data.frame(
Dan = ymd("2002-03-04") + days(1:10),
Stefan = ymd("2006-01-13") + days(1:10)
)
date_rec <- recipe(~ Dan + Stefan, examples) %>%
step_date(all_predictors())
tidy(date_rec, number = 1)
#> # A tibble: 3 × 4
#> terms value ordinal id
#> <chr> <chr> <lgl> <chr>
#> 1 all_predictors() dow FALSE date_vUNsj
#> 2 all_predictors() month FALSE date_vUNsj
#> 3 all_predictors() year FALSE date_vUNsj
date_rec <- prep(date_rec, training = examples)
date_values <- bake(date_rec, new_data = examples)
date_values
#> # A tibble: 10 × 8
#> Dan Stefan Dan_dow Dan_month Dan_year Stefan_dow
#> <date> <date> <fct> <fct> <int> <fct>
#> 1 2002-03-05 2006-01-14 Tue Mar 2002 Sat
#> 2 2002-03-06 2006-01-15 Wed Mar 2002 Sun
#> 3 2002-03-07 2006-01-16 Thu Mar 2002 Mon
#> 4 2002-03-08 2006-01-17 Fri Mar 2002 Tue
#> 5 2002-03-09 2006-01-18 Sat Mar 2002 Wed
#> 6 2002-03-10 2006-01-19 Sun Mar 2002 Thu
#> 7 2002-03-11 2006-01-20 Mon Mar 2002 Fri
#> 8 2002-03-12 2006-01-21 Tue Mar 2002 Sat
#> 9 2002-03-13 2006-01-22 Wed Mar 2002 Sun
#> 10 2002-03-14 2006-01-23 Thu Mar 2002 Mon
#> # ℹ 2 more variables: Stefan_month <fct>, Stefan_year <int>
tidy(date_rec, number = 1)
#> # A tibble: 6 × 4
#> terms value ordinal id
#> <chr> <chr> <lgl> <chr>
#> 1 Dan dow FALSE date_vUNsj
#> 2 Dan month FALSE date_vUNsj
#> 3 Dan year FALSE date_vUNsj
#> 4 Stefan dow FALSE date_vUNsj
#> 5 Stefan month FALSE date_vUNsj
#> 6 Stefan year FALSE date_vUNsj