step_normalize()
creates a specification of a recipe step that will
normalize numeric data to have a standard deviation of one and a mean of
zero.
Usage
step_normalize(
recipe,
...,
role = NA,
trained = FALSE,
means = NULL,
sds = NULL,
na_rm = TRUE,
skip = FALSE,
id = rand_id("normalize")
)
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
One or more selector functions to choose variables for this step. See
selections()
for more details.- role
Not used by this step since no new variables are created.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- means
A named numeric vector of means. This is
NULL
until computed byprep()
.- sds
A named numeric vector of standard deviations This is
NULL
until computed byprep()
.- na_rm
A logical value indicating whether
NA
values should be removed when computing the standard deviation and mean.- skip
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked whenprep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- id
A character string that is unique to this step to identify it.
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Details
Centering data means that the average of a variable is subtracted
from the data. Scaling data means that the standard deviation of a variable
is divided out of the data. step_normalize
estimates the variable standard
deviations and means from the data used in the training
argument of
prep.recipe
. bake.recipe
then applies the scaling to new data sets using
these estimates.
Tidying
When you tidy()
this step, a tibble is returned with
columns terms
, statistic
, value
, and id
:
- terms
character, the selectors or variables selected
- statistic
character, name of statistic (
"mean"
or"sd"
)- value
numeric, value of the
statistic
- id
character, id of this step
Case weights
This step performs an unsupervised operation that can utilize case weights.
As a result, case weights are only used with frequency weights. For more
information, see the documentation in case_weights and the examples on
tidymodels.org
.
See also
Other normalization steps:
step_center()
,
step_range()
,
step_scale()
Examples
data(biomass, package = "modeldata")
biomass_tr <- biomass[biomass$dataset == "Training", ]
biomass_te <- biomass[biomass$dataset == "Testing", ]
rec <- recipe(
HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
data = biomass_tr
)
norm_trans <- rec %>%
step_normalize(carbon, hydrogen)
norm_obj <- prep(norm_trans, training = biomass_tr)
transformed_te <- bake(norm_obj, biomass_te)
biomass_te[1:10, names(transformed_te)]
#> carbon hydrogen oxygen nitrogen sulfur HHV
#> 15 46.35 5.67 47.20 0.30 0.22 18.275
#> 20 43.25 5.50 48.06 2.85 0.34 17.560
#> 26 42.70 5.50 49.10 2.40 0.30 17.173
#> 31 46.40 6.10 37.30 1.80 0.50 18.851
#> 36 48.76 6.32 42.77 0.20 0.00 20.547
#> 41 44.30 5.50 41.70 0.70 0.20 18.467
#> 46 38.94 5.23 54.13 1.19 0.51 15.095
#> 51 42.10 4.66 33.80 0.95 0.20 16.240
#> 55 29.20 4.40 31.10 0.14 4.90 11.147
#> 65 27.80 3.77 23.69 4.63 1.05 10.750
transformed_te
#> # A tibble: 80 × 6
#> carbon hydrogen oxygen nitrogen sulfur HHV
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.193 0.176 47.2 0.3 0.22 18.3
#> 2 -0.490 0.0342 48.1 2.85 0.34 17.6
#> 3 -0.543 0.0342 49.1 2.4 0.3 17.2
#> 4 -0.188 0.535 37.3 1.8 0.5 18.9
#> 5 0.0390 0.719 42.8 0.2 0 20.5
#> 6 -0.390 0.0342 41.7 0.7 0.2 18.5
#> 7 -0.904 -0.191 54.1 1.19 0.51 15.1
#> 8 -0.601 -0.668 33.8 0.95 0.2 16.2
#> 9 -1.84 -0.885 31.1 0.14 4.9 11.1
#> 10 -1.97 -1.41 23.7 4.63 1.05 10.8
#> # ℹ 70 more rows
tidy(norm_trans, number = 1)
#> # A tibble: 2 × 4
#> terms statistic value id
#> <chr> <chr> <dbl> <chr>
#> 1 carbon NA NA normalize_u8gfY
#> 2 hydrogen NA NA normalize_u8gfY
tidy(norm_obj, number = 1)
#> # A tibble: 4 × 4
#> terms statistic value id
#> <chr> <chr> <dbl> <chr>
#> 1 carbon mean 48.4 normalize_u8gfY
#> 2 hydrogen mean 5.46 normalize_u8gfY
#> 3 carbon sd 10.4 normalize_u8gfY
#> 4 hydrogen sd 1.20 normalize_u8gfY
# To keep the original variables in the output, use `step_mutate_at`:
norm_keep_orig <- rec %>%
step_mutate_at(all_numeric_predictors(), fn = list(orig = ~.)) %>%
step_normalize(-contains("orig"), -all_outcomes())
keep_orig_obj <- prep(norm_keep_orig, training = biomass_tr)
keep_orig_te <- bake(keep_orig_obj, biomass_te)
keep_orig_te
#> # A tibble: 80 × 11
#> carbon hydrogen oxygen nitrogen sulfur HHV carbon_orig
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.193 0.176 0.801 -0.643 0.00755 18.3 46.4
#> 2 -0.490 0.0342 0.881 1.47 0.281 17.6 43.2
#> 3 -0.543 0.0342 0.977 1.10 0.190 17.2 42.7
#> 4 -0.188 0.535 -0.113 0.602 0.646 18.9 46.4
#> 5 0.0390 0.719 0.392 -0.726 -0.494 20.5 48.8
#> 6 -0.390 0.0342 0.293 -0.311 -0.0380 18.5 44.3
#> 7 -0.904 -0.191 1.44 0.0958 0.668 15.1 38.9
#> 8 -0.601 -0.668 -0.436 -0.103 -0.0380 16.2 42.1
#> 9 -1.84 -0.885 -0.686 -0.776 10.7 11.1 29.2
#> 10 -1.97 -1.41 -1.37 2.95 1.90 10.8 27.8
#> # ℹ 70 more rows
#> # ℹ 4 more variables: hydrogen_orig <dbl>, oxygen_orig <dbl>,
#> # nitrogen_orig <dbl>, sulfur_orig <dbl>