step_range() creates a specification of a recipe step that will normalize
numeric data to be within a pre-defined range of values.
Usage
step_range(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  min = 0,
  max = 1,
  clipping = TRUE,
  ranges = NULL,
  skip = FALSE,
  id = rand_id("range")
)Arguments
- recipe
 A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
 One or more selector functions to choose variables for this step. See
selections()for more details.- role
 Not used by this step since no new variables are created.
- trained
 A logical to indicate if the quantities for preprocessing have been estimated.
- min, max
 Single numeric values for the smallest (or largest) value in the transformed data.
- clipping
 A single logical value for determining whether application of transformation onto new data should be forced to be inside
minandmax. Defaults to TRUE.- ranges
 A character vector of variables that will be normalized. Note that this is ignored until the values are determined by
prep(). Setting this value will be ineffective.- skip
 A logical. Should the step be skipped when the recipe is baked by
bake()? While all operations are baked whenprep()is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUEas it may affect the computations for subsequent operations.- id
 A character string that is unique to this step to identify it.
Value
An updated version of recipe with the new step added to the
sequence of any existing operations.
Details
When a new data point is outside of the ranges seen in the training set, the
new values are truncated at min or max.
Tidying
When you tidy() this step, a tibble is returned with
columns terms, min, max , and id:
- terms
 character, the selectors or variables selected
- min
 numeric, lower range
- max
 numeric, upper range
- id
 character, id of this step
See also
Other normalization steps:
step_center(),
step_normalize(),
step_scale()
Examples
data(biomass, package = "modeldata")
biomass_tr <- biomass[biomass$dataset == "Training", ]
biomass_te <- biomass[biomass$dataset == "Testing", ]
rec <- recipe(
  HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
  data = biomass_tr
)
ranged_trans <- rec |>
  step_range(carbon, hydrogen)
ranged_obj <- prep(ranged_trans, training = biomass_tr)
transformed_te <- bake(ranged_obj, biomass_te)
biomass_te[1:10, names(transformed_te)]
#>    carbon hydrogen oxygen nitrogen sulfur    HHV
#> 15  46.35     5.67  47.20     0.30   0.22 18.275
#> 20  43.25     5.50  48.06     2.85   0.34 17.560
#> 26  42.70     5.50  49.10     2.40   0.30 17.173
#> 31  46.40     6.10  37.30     1.80   0.50 18.851
#> 36  48.76     6.32  42.77     0.20   0.00 20.547
#> 41  44.30     5.50  41.70     0.70   0.20 18.467
#> 46  38.94     5.23  54.13     1.19   0.51 15.095
#> 51  42.10     4.66  33.80     0.95   0.20 16.240
#> 55  29.20     4.40  31.10     0.14   4.90 11.147
#> 65  27.80     3.77  23.69     4.63   1.05 10.750
transformed_te
#> # A tibble: 80 × 6
#>    carbon hydrogen oxygen nitrogen sulfur   HHV
#>     <dbl>    <dbl>  <dbl>    <dbl>  <dbl> <dbl>
#>  1  0.384    0.490   47.2     0.3    0.22  18.3
#>  2  0.347    0.475   48.1     2.85   0.34  17.6
#>  3  0.340    0.475   49.1     2.4    0.3   17.2
#>  4  0.385    0.527   37.3     1.8    0.5   18.9
#>  5  0.414    0.546   42.8     0.2    0     20.5
#>  6  0.360    0.475   41.7     0.7    0.2   18.5
#>  7  0.295    0.451   54.1     1.19   0.51  15.1
#>  8  0.333    0.402   33.8     0.95   0.2   16.2
#>  9  0.177    0.379   31.1     0.14   4.9   11.1
#> 10  0.160    0.325   23.7     4.63   1.05  10.8
#> # ℹ 70 more rows
tidy(ranged_trans, number = 1)
#> # A tibble: 2 × 4
#>   terms      min   max id         
#>   <chr>    <dbl> <dbl> <chr>      
#> 1 carbon      NA    NA range_RcYYk
#> 2 hydrogen    NA    NA range_RcYYk
tidy(ranged_obj, number = 1)
#> # A tibble: 2 × 4
#>   terms      min   max id         
#>   <chr>    <dbl> <dbl> <chr>      
#> 1 carbon   14.6   97.2 range_RcYYk
#> 2 hydrogen  0.03  11.6 range_RcYYk
