step_rename() creates a specification of a recipe step that will add
variables using dplyr::rename().
Usage
step_rename(
  recipe,
  ...,
  role = "predictor",
  trained = FALSE,
  inputs = NULL,
  skip = FALSE,
  id = rand_id("rename")
)Arguments
- recipe
 A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
 One or more unquoted expressions separated by commas. See
dplyr::rename()where the convention isnew_name = old_name.- role
 For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.
- trained
 A logical to indicate if the quantities for preprocessing have been estimated.
- inputs
 Quosure(s) of
....- skip
 A logical. Should the step be skipped when the recipe is baked by
bake()? While all operations are baked whenprep()is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUEas it may affect the computations for subsequent operations.- id
 A character string that is unique to this step to identify it.
Value
An updated version of recipe with the new step added to the
sequence of any existing operations.
Details
When an object in the user's global environment is referenced in the
expression defining the new variable(s), it is a good idea to use
quasiquotation (e.g. !!) to embed the value of the object in the expression
(to be portable between sessions).
Tidying
When you tidy() this step, a tibble is returned with
columns terms, value , and id:
- terms
 character, the selectors or variables selected
- value
 character,
renameexpression- id
 character, id of this step
Sparse data
This step can be applied to sparse_data such that it is preserved. Nothing needs to be done for this to happen as it is done automatically.
See also
Other dplyr steps:
step_arrange(),
step_filter(),
step_mutate(),
step_mutate_at(),
step_rename_at(),
step_sample(),
step_select(),
step_slice()
Examples
recipe(~., data = iris) |>
  step_rename(Sepal_Width = Sepal.Width) |>
  prep() |>
  bake(new_data = NULL) |>
  slice(1:5)
#> # A tibble: 5 × 5
#>   Sepal.Length Sepal_Width Petal.Length Petal.Width Species
#>          <dbl>       <dbl>        <dbl>       <dbl> <fct>  
#> 1          5.1         3.5          1.4         0.2 setosa 
#> 2          4.9         3            1.4         0.2 setosa 
#> 3          4.7         3.2          1.3         0.2 setosa 
#> 4          4.6         3.1          1.5         0.2 setosa 
#> 5          5           3.6          1.4         0.2 setosa 
vars <- c(var1 = "cyl", var2 = "am")
car_rec <-
  recipe(~., data = mtcars) |>
  step_rename(!!!vars)
car_rec |>
  prep() |>
  bake(new_data = NULL)
#> # A tibble: 32 × 11
#>      mpg  var1  disp    hp  drat    wt  qsec    vs  var2  gear  carb
#>    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#>  1  21       6  160    110  3.9   2.62  16.5     0     1     4     4
#>  2  21       6  160    110  3.9   2.88  17.0     0     1     4     4
#>  3  22.8     4  108     93  3.85  2.32  18.6     1     1     4     1
#>  4  21.4     6  258    110  3.08  3.22  19.4     1     0     3     1
#>  5  18.7     8  360    175  3.15  3.44  17.0     0     0     3     2
#>  6  18.1     6  225    105  2.76  3.46  20.2     1     0     3     1
#>  7  14.3     8  360    245  3.21  3.57  15.8     0     0     3     4
#>  8  24.4     4  147.    62  3.69  3.19  20       1     0     4     2
#>  9  22.8     4  141.    95  3.92  3.15  22.9     1     0     4     2
#> 10  19.2     6  168.   123  3.92  3.44  18.3     1     0     4     4
#> # ℹ 22 more rows
car_rec |>
  tidy(number = 1)
#> # A tibble: 2 × 3
#>   terms value     id          
#>   <chr> <chr>     <chr>       
#> 1 var1  "\"cyl\"" rename_sfgIN
#> 2 var2  "\"am\""  rename_sfgIN
