
Evaluate a selection with tidyselect semantics for arguments
Source:R/misc.R
      recipes_argument_select.Rdrecipes_argument_select() is a variant of
recipes_eval_select() that is tailored to work well with arguments in steps
that specify variables. Such as denom in step_ratio().
This is a developer tool that is only useful for creating new recipes steps.
Usage
recipes_argument_select(
  quos,
  data,
  info,
  single = TRUE,
  arg_name = "outcome",
  call = caller_env()
)Arguments
- quos
 A list of quosures describing the selection. Captured with
rlang::enquos()and stored in the step object corresponding to the argument.- data
 A data frame to use as the context to evaluate the selection in. This is generally the
trainingdata passed to theprep()method of your step.- info
 A data frame of term information describing each column's type and role for use with the recipes selectors. This is generally the
infodata passed to theprep()method of your step.- single
 A logical. Should an error be thrown if more than 1 variable is selected. Defaults to
TRUE.- arg_name
 A string. Name of argument, used to enrich error messages.
- call
 The execution environment of a currently running function, e.g.
caller_env(). The function will be mentioned in error messages as the source of the error. See the call argument ofrlang::abort()for more information.
Details
This function is written to be backwards compatible with previous input types
of these arguments. Will thus accept strings, tidyselect, recipes selections,
helper functions imp_vars() in addition to the prefered bare names.
Examples
library(rlang)
data(scat, package = "modeldata")
rec <- recipe(Species ~ ., data = scat)
info <- summary(rec)
info
#> # A tibble: 19 × 4
#>    variable  type      role      source  
#>    <chr>     <list>    <chr>     <chr>   
#>  1 Month     <chr [3]> predictor original
#>  2 Year      <chr [2]> predictor original
#>  3 Site      <chr [3]> predictor original
#>  4 Location  <chr [3]> predictor original
#>  5 Age       <chr [2]> predictor original
#>  6 Number    <chr [2]> predictor original
#>  7 Length    <chr [2]> predictor original
#>  8 Diameter  <chr [2]> predictor original
#>  9 Taper     <chr [2]> predictor original
#> 10 TI        <chr [2]> predictor original
#> 11 Mass      <chr [2]> predictor original
#> 12 d13C      <chr [2]> predictor original
#> 13 d15N      <chr [2]> predictor original
#> 14 CN        <chr [2]> predictor original
#> 15 ropey     <chr [2]> predictor original
#> 16 segmented <chr [2]> predictor original
#> 17 flat      <chr [2]> predictor original
#> 18 scrape    <chr [2]> predictor original
#> 19 Species   <chr [3]> outcome   original
recipes_argument_select(quos(Year), scat, info)
#> [1] "Year"
recipes_argument_select(vars(Year), scat, info)
#> [1] "Year"
recipes_argument_select(imp_vars(Year), scat, info)
#> [1] "Year"