
Package index
- 
          recipes-packagerecipes
- recipes: A package for computing and preprocessing design matrices.
- 
          recipe()
- Create a recipe for preprocessing data
- 
          formula(<recipe>)
- Create a formula from a prepared recipe
- 
          print(<recipe>)
- Print a Recipe
- 
          summary(<recipe>)
- Summarize a recipe
- 
          prep()
- Estimate a preprocessing recipe
- 
          bake()
- Apply a trained preprocessing recipe
- 
          juice()superseded
- Extract transformed training set
- 
          selectionsselection
- Methods for selecting variables in step functions
- 
          has_role()has_type()all_outcomes()all_predictors()all_date()all_date_predictors()all_datetime()all_datetime_predictors()all_double()all_double_predictors()all_factor()all_factor_predictors()all_integer()all_integer_predictors()all_logical()all_logical_predictors()all_nominal()all_nominal_predictors()all_numeric()all_numeric_predictors()all_ordered()all_ordered_predictors()all_string()all_string_predictors()all_unordered()all_unordered_predictors()current_info()
- Role Selection
- 
          add_role()update_role()remove_role()
- Manually alter roles
- 
          update_role_requirements()
- Update role specific requirements
- 
          get_case_weights()averages()medians()variances()correlations()covariances()pca_wts()are_weights_used()
- Helpers for steps with case weights
- 
          case_weights
- Using case weights with recipes
- 
          step_impute_bag()imp_vars()
- Impute via bagged trees
- 
          step_impute_knn()
- Impute via k-nearest neighbors
- 
          step_impute_linear()
- Impute numeric variables via a linear model
- 
          step_impute_lower()
- Impute numeric data below the threshold of measurement
- 
          step_impute_mean()
- Impute numeric data using the mean
- 
          step_impute_median()
- Impute numeric data using the median
- 
          step_impute_mode()
- Impute nominal data using the most common value
- 
          step_impute_roll()
- Impute numeric data using a rolling window statistic
- 
          step_unknown()
- Assign missing categories to "unknown"
- 
          step_BoxCox()
- Box-Cox transformation for non-negative data
- 
          step_bs()
- B-spline basis functions
- 
          step_harmonic()
- Add sin and cos terms for harmonic analysis
- 
          step_hyperbolic()
- Hyperbolic transformations
- 
          step_inverse()
- Inverse transformation
- 
          step_invlogit()
- Inverse logit transformation
- 
          step_log()
- Logarithmic transformation
- 
          step_logit()
- Logit transformation
- 
          step_mutate()
- Add new variables using dplyr
- 
          step_ns()
- Natural spline basis functions
- 
          step_poly()
- Orthogonal polynomial basis functions
- 
          step_poly_bernstein()
- Generalized bernstein polynomial basis
- 
          step_relu()
- Apply (smoothed) rectified linear transformation
- 
          step_spline_b()
- Basis splines
- 
          step_spline_convex()
- Convex splines
- 
          step_spline_monotone()
- Monotone splines
- 
          step_spline_natural()
- Natural splines
- 
          step_spline_nonnegative()
- Non-negative splines
- 
          step_sqrt()
- Square root transformation
- 
          step_YeoJohnson()
- Yeo-Johnson transformation
- 
          step_discretize()
- Discretize Numeric Variables
- 
          discretize()predict(<discretize>)
- Discretize Numeric Variables
- 
          step_cut()
- Cut a numeric variable into a factor
- 
          step_bin2factor()
- Create a factors from A dummy variable
- 
          step_count()
- Create counts of patterns using regular expressions
- 
          step_dummy()
- Create traditional dummy variables
- 
          step_dummy_extract()
- Extract patterns from nominal data
- 
          step_dummy_multi_choice()
- Handle levels in multiple predictors together
- 
          step_factor2string()
- Convert factors to strings
- 
          step_indicate_na()
- Create missing data column indicators
- 
          step_integer()
- Convert values to predefined integers
- 
          step_novel()
- Simple value assignments for novel factor levels
- 
          step_num2factor()
- Convert numbers to factors
- 
          step_ordinalscore()
- Convert ordinal factors to numeric scores
- 
          step_other()
- Collapse infrequent categorical levels
- 
          step_percentile()
- Percentile transformation
- 
          step_regex()
- Detect a regular expression
- 
          step_relevel()
- Relevel factors to a desired level
- 
          step_string2factor()
- Convert strings to factors
- 
          step_unknown()
- Assign missing categories to "unknown"
- 
          step_unorder()
- Convert ordered factors to unordered factors
- 
          step_date()
- Date feature generator
- 
          step_time()
- Time feature generator
- 
          step_holiday()
- Holiday feature generator
- 
          step_interact()
- Create interaction variables
- 
          step_center()
- Centering numeric data
- 
          step_normalize()
- Center and scale numeric data
- 
          step_range()
- Scaling numeric data to a specific range
- 
          step_scale()
- Scaling numeric data
- 
          step_classdist()
- Distances to class centroids
- 
          step_classdist_shrunken()
- Compute shrunken centroid distances for classification models
- 
          step_depth()
- Data depths
- 
          step_geodist()
- Distance between two locations
- 
          step_ica()
- ICA signal extraction
- 
          step_isomap()
- Isomap embedding
- 
          step_kpca()
- Kernel PCA signal extraction
- 
          step_kpca_poly()
- Polynomial kernel PCA signal extraction
- 
          step_kpca_rbf()
- Radial basis function kernel PCA signal extraction
- 
          step_mutate_at()superseded
- Mutate multiple columns using dplyr
- 
          step_nnmf()deprecated
- Non-negative matrix factorization signal extraction
- 
          step_nnmf_sparse()
- Non-negative matrix factorization signal extraction with lasso penalization
- 
          step_pca()
- PCA signal extraction
- 
          step_pls()
- Partial least squares feature extraction
- 
          step_ratio()denom_vars()
- Ratio variable creation
- 
          step_spatialsign()
- Spatial sign preprocessing
- 
          step_corr()
- High correlation filter
- 
          step_filter_missing()
- Missing value column filter
- 
          step_lincomb()
- Linear combination filter
- 
          step_nzv()
- Near-zero variance filter
- 
          step_rm()
- General variable filter
- 
          step_select()deprecated
- Select variables using dplyr
- 
          step_zv()
- Zero variance filter
- 
          step_arrange()
- Sort rows using dplyr
- 
          step_filter()
- Filter rows using dplyr
- 
          step_lag()
- Create a lagged predictor
- 
          step_naomit()
- Remove observations with missing values
- 
          step_impute_roll()
- Impute numeric data using a rolling window statistic
- 
          step_sample()
- Sample rows using dplyr
- 
          step_shuffle()
- Shuffle variables
- 
          step_slice()
- Filter rows by position using dplyr
- 
          step_intercept()
- Add intercept (or constant) column
- 
          step_profile()
- Create a profiling version of a data set
- 
          step_rename()
- Rename variables by name using dplyr
- 
          step_rename_at()
- Rename multiple columns using dplyr
- 
          step_window()
- Moving window functions
- 
          check_class()
- Check variable class
- 
          check_cols()
- Check if all columns are present
- 
          check_missing()
- Check for missing values
- 
          check_new_values()
- Check for new values
- 
          check_range()
- Check range consistency
- 
          developer_functions
- Developer functions for creating recipes steps
- 
          add_step()add_check()
- Add a New Operation to the Current Recipe
- 
          detect_step()
- Detect if a particular step or check is used in a recipe
- 
          fully_trained()
- Check to see if a recipe is trained/prepared
- 
          .get_data_types()
- Get types for use in recipes
- 
          names0()dummy_names()dummy_extract_names()
- Naming Tools
- 
          prepper()
- Wrapper function for preparing recipes within resampling
- 
          recipes_argument_select()
- Evaluate a selection with tidyselect semantics for arguments
- 
          recipes_eval_select()
- Evaluate a selection with tidyselect semantics specific to recipes
- 
          recipes_extension_check()
- Checks that steps have all S3 methods
- 
          recipes_ptype()
- Prototype of recipe object
- 
          recipes_ptype_validate()
- Validate prototype of recipe object
- 
          recipes_names_predictors()recipes_names_outcomes()
- Role indicators
- 
          sparse_data
- Using sparse data with recipes
- 
          update(<step>)
- Update a recipe step
- 
          tidy(<step_BoxCox>)tidy(<step_YeoJohnson>)tidy(<step_arrange>)tidy(<step_bin2factor>)tidy(<step_bs>)tidy(<step_center>)tidy(<check_class>)tidy(<step_classdist>)tidy(<step_classdist_shrunken>)tidy(<check_cols>)tidy(<step_corr>)tidy(<step_count>)tidy(<step_cut>)tidy(<step_date>)tidy(<step_depth>)tidy(<step_discretize>)tidy(<step_dummy>)tidy(<step_dummy_extract>)tidy(<step_dummy_multi_choice>)tidy(<step_factor2string>)tidy(<step_filter>)tidy(<step_filter_missing>)tidy(<step_geodist>)tidy(<step_harmonic>)tidy(<step_holiday>)tidy(<step_hyperbolic>)tidy(<step_ica>)tidy(<step_impute_bag>)tidy(<step_impute_knn>)tidy(<step_impute_linear>)tidy(<step_impute_lower>)tidy(<step_impute_mean>)tidy(<step_impute_median>)tidy(<step_impute_mode>)tidy(<step_impute_roll>)tidy(<step_indicate_na>)tidy(<step_integer>)tidy(<step_interact>)tidy(<step_intercept>)tidy(<step_inverse>)tidy(<step_invlogit>)tidy(<step_isomap>)tidy(<step_kpca>)tidy(<step_kpca_poly>)tidy(<step_kpca_rbf>)tidy(<step_lag>)tidy(<step_lincomb>)tidy(<step_log>)tidy(<step_logit>)tidy(<check_missing>)tidy(<step_mutate>)tidy(<step_mutate_at>)tidy(<step_naomit>)tidy(<check_new_values>)tidy(<step_nnmf>)tidy(<step_nnmf_sparse>)tidy(<step_normalize>)tidy(<step_novel>)tidy(<step_ns>)tidy(<step_num2factor>)tidy(<step_nzv>)tidy(<step_ordinalscore>)tidy(<step_other>)tidy(<step_pca>)tidy(<step_percentile>)tidy(<step_pls>)tidy(<step_poly>)tidy(<step_poly_bernstein>)tidy(<step_profile>)tidy(<step_range>)tidy(<check_range>)tidy(<step_ratio>)tidy(<step_regex>)tidy(<step_relevel>)tidy(<step_relu>)tidy(<step_rename>)tidy(<step_rename_at>)tidy(<step_rm>)tidy(<step_sample>)tidy(<step_scale>)tidy(<step_select>)tidy(<step_shuffle>)tidy(<step_slice>)tidy(<step_spatialsign>)tidy(<step_spline_b>)tidy(<step_spline_convex>)tidy(<step_spline_monotone>)tidy(<step_spline_natural>)tidy(<step_spline_nonnegative>)tidy(<step_sqrt>)tidy(<step_string2factor>)tidy(<recipe>)tidy(<step>)tidy(<check>)tidy(<step_time>)tidy(<step_unknown>)tidy(<step_unorder>)tidy(<step_window>)tidy(<step_zv>)
- Tidy the result of a recipe