step_geodist()
creates a specification of a recipe step that will
calculate the distance between points on a map to a reference location.
Usage
step_geodist(
recipe,
lat = NULL,
lon = NULL,
role = "predictor",
trained = FALSE,
ref_lat = NULL,
ref_lon = NULL,
is_lat_lon = TRUE,
log = FALSE,
name = "geo_dist",
columns = NULL,
keep_original_cols = TRUE,
skip = FALSE,
id = rand_id("geodist")
)
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- lon, lat
Selector functions to choose which variables are used by the step. See
selections()
for more details.- role
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- ref_lon, ref_lat
Single numeric values for the location of the reference point.
- is_lat_lon
A logical: Are coordinates in latitude and longitude? If
TRUE
the Haversine formula is used and the returned result is meters. IfFALSE
the Pythagorean formula is used. Default isTRUE
and for recipes created from previous versions of recipes, a value ofFALSE
is used.- log
A logical: should the distance be transformed by the natural log function?
- name
A single character value to use for the new predictor column. If a column exists with this name, an error is issued.
- columns
A character string of the selected variable names. This field is a placeholder and will be populated once
prep()
is used.- keep_original_cols
A logical to keep the original variables in the output. Defaults to
TRUE
.- skip
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked whenprep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- id
A character string that is unique to this step to identify it.
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Details
step_geodist
uses the Pythagorean theorem to calculate Euclidean
distances if is_lat_lon
is FALSE. If is_lat_lon
is TRUE, the Haversine
formula is used to calculate the great-circle distance in meters.
Tidying
When you tidy()
this step, a tibble is returned with
columns latitude
, longitude
, ref_latitude
, ref_longitude
,
is_lat_lon
, name
, and id
:
- latitude
character, name of latitude variable
- longitude
character, name of longitude variable
- ref_latitude
numeric, location of latitude reference point
- ref_longitude
numeric, location of longitude reference point
- is_lat_lon
character, the summary function name
- name
character, name of resulting variable
- id
character, id of this step
See also
Other multivariate transformation steps:
step_classdist()
,
step_classdist_shrunken()
,
step_depth()
,
step_ica()
,
step_isomap()
,
step_kpca()
,
step_kpca_poly()
,
step_kpca_rbf()
,
step_mutate_at()
,
step_nnmf()
,
step_nnmf_sparse()
,
step_pca()
,
step_pls()
,
step_ratio()
,
step_spatialsign()
Examples
data(Smithsonian, package = "modeldata")
# How close are the museums to Union Station?
near_station <- recipe(~., data = Smithsonian) %>%
update_role(name, new_role = "location") %>%
step_geodist(
lat = latitude, lon = longitude, log = FALSE,
ref_lat = 38.8986312, ref_lon = -77.0062457,
is_lat_lon = TRUE
) %>%
prep(training = Smithsonian)
bake(near_station, new_data = NULL) %>%
arrange(geo_dist)
#> # A tibble: 20 × 4
#> name latitude longitude geo_dist
#> <chr> <dbl> <dbl> <dbl>
#> 1 National Postal Museum 38.9 -77.0 367.
#> 2 Renwick Gallery 38.9 -77.0 932.
#> 3 National Museum of the American Indian 38.9 -77.0 1571.
#> 4 Smithsonian American Art Museum 38.9 -77.0 1636.
#> 5 National Portrait Gallery 38.9 -77.0 1646.
#> 6 National Air and Space Museum 38.9 -77.0 1796.
#> 7 Hirshhorn Museum and Sculpture Garden 38.9 -77.0 2008.
#> 8 National Museum of Natural History 38.9 -77.0 2073.
#> 9 Arthur M. Sackler Gallery 38.9 -77.0 2108.
#> 10 Arts and Industries Building 38.9 -77.0 2124.
#> 11 Smithsonian Institution Building 38.9 -77.0 2193.
#> 12 National Museum of African Art 38.9 -77.0 2202.
#> 13 Freer Gallery of Art 38.9 -77.0 2266.
#> 14 National Museum of American History 38.9 -77.0 2393.
#> 15 National Museum of African American Histor… 38.9 -77.0 2611.
#> 16 National Zoological Park 38.9 -77.1 5246.
#> 17 Anacostia Community Museum 38.9 -77.0 5332.
#> 18 Steven F. Udvar-Hazy Center 38.9 -77.4 38111.
#> 19 George Gustav Heye Center 40.7 -74.0 324871.
#> 20 Cooper Hewitt, Smithsonian Design Museum 40.8 -74.0 334041.
tidy(near_station, number = 1)
#> # A tibble: 1 × 7
#> latitude longitude ref_latitude ref_longitude is_lat_lon name id
#> <chr> <chr> <dbl> <dbl> <lgl> <chr> <chr>
#> 1 latitude longitude 38.9 -77.0 TRUE geo_dist geodi…