Non-negative matrix factorization signal extraction with lasso penalization
Source:R/nnmf_sparse.R
step_nnmf_sparse.Rd
step_nnmf_sparse()
creates a specification of a recipe step that will
convert numeric data into one or more non-negative components.
Usage
step_nnmf_sparse(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 2,
penalty = 0.001,
options = list(),
res = NULL,
prefix = "NNMF",
seed = sample.int(10^5, 1),
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("nnmf_sparse")
)
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
One or more selector functions to choose variables for this step. See
selections()
for more details.- role
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- num_comp
The number of components to retain as new predictors. If
num_comp
is greater than the number of columns or the number of possible components, a smaller value will be used. Ifnum_comp = 0
is set then no transformation is done and selected variables will stay unchanged, regardless of the value ofkeep_original_cols
.- penalty
A non-negative number used as a penalization factor for the loadings. Values are usually between zero and one.
- options
A list of options to
nmf()
in the RcppML package. That package has a separate functionsetRcppMLthreads()
that controls the amount of internal parallelization. Note that the argumentA
,k
,L1
, andseed
should not be passed here.- res
A matrix of loadings is stored here, along with the names of the original predictors, once this preprocessing step has been trained by
prep()
.- prefix
A character string for the prefix of the resulting new variables. See notes below.
- seed
An integer that will be used to set the seed in isolation when computing the factorization.
- keep_original_cols
A logical to keep the original variables in the output. Defaults to
FALSE
.- skip
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked whenprep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- id
A character string that is unique to this step to identify it.
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Details
Non-negative matrix factorization computes latent components that have non-negative values and take into account that the original data have non-negative values.
The argument num_comp
controls the number of components that will be retained
(the original variables that are used to derive the components are removed from
the data). The new components will have names that begin with prefix
and a
sequence of numbers. The variable names are padded with zeros. For example, if
num_comp < 10
, their names will be NNMF1
- NNMF9
. If num_comp = 101
,
the names would be NNMF1
- NNMF101
.
Tidying
When you tidy()
this step, a tibble is returned with
columns terms
, value
, component
, and id
:
- terms
character, the selectors or variables selected
- value
numeric, value of loading
- component
character, name of component
- id
character, id of this step
Tuning Parameters
This step has 2 tuning parameters:
num_comp
: # Components (type: integer, default: 2)penalty
: Amount of Regularization (type: double, default: 0.001)
See also
Other multivariate transformation steps:
step_classdist()
,
step_classdist_shrunken()
,
step_depth()
,
step_geodist()
,
step_ica()
,
step_isomap()
,
step_kpca()
,
step_kpca_poly()
,
step_kpca_rbf()
,
step_mutate_at()
,
step_nnmf()
,
step_pca()
,
step_pls()
,
step_ratio()
,
step_spatialsign()
Examples
if (rlang::is_installed(c("modeldata", "RcppML", "ggplot2"))) {
library(Matrix)
data(biomass, package = "modeldata")
rec <- recipe(HHV ~ ., data = biomass) %>%
update_role(sample, new_role = "id var") %>%
update_role(dataset, new_role = "split variable") %>%
step_nnmf_sparse(
all_numeric_predictors(),
num_comp = 2,
seed = 473,
penalty = 0.01
) %>%
prep(training = biomass)
bake(rec, new_data = NULL)
library(ggplot2)
bake(rec, new_data = NULL) %>%
ggplot(aes(x = NNMF2, y = NNMF1, col = HHV)) +
geom_point()
}