step_string2factor()
will convert one or more character vectors to factors
(ordered or unordered).
Use this step only in special cases (see Details) and instead convert strings to factors before using any tidymodels functions.
Usage
step_string2factor(
recipe,
...,
role = NA,
trained = FALSE,
levels = NULL,
ordered = FALSE,
skip = FALSE,
id = rand_id("string2factor")
)
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
One or more selector functions to choose variables for this step. See
selections()
for more details.- role
Not used by this step since no new variables are created.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- levels
An optional specification of the levels to be used for the new factor. If left
NULL
, the sorted unique values present whenbake
is called will be used.- ordered
A single logical value; should the factor(s) be ordered?
- skip
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked whenprep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- id
A character string that is unique to this step to identify it.
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Details
When should you use this step?
In most cases, if you are planning to use step_string2factor()
without setting levels
, you will be better off converting
those character variables to factor variables before using a recipe.
This can be done using dplyr with the following code
During resampling, the complete set of values might
not be in the character data. Converting them to factors with
step_string2factor()
then will misconfigure the levels.
If the levels
argument to step_string2factor()
is used, it will
convert all variables affected by this step to have the same
levels. Because of this, you will need to know the full set of level
when you define the recipe.
Also, note that prep()
has an option strings_as_factors
that
defaults to TRUE
. This should be changed so that raw character
data will be applied to step_string2factor()
. However, this step
can also take existing factors (but will leave them as-is).
Tidying
When you tidy()
this step, a tibble is returned with
columns terms
, ordered
, and id
:
- terms
character, the selectors or variables selected
- ordered
logical, are factors ordered
- id
character, id of this step
See also
Other dummy variable and encoding steps:
step_bin2factor()
,
step_count()
,
step_date()
,
step_dummy()
,
step_dummy_extract()
,
step_dummy_multi_choice()
,
step_factor2string()
,
step_holiday()
,
step_indicate_na()
,
step_integer()
,
step_novel()
,
step_num2factor()
,
step_ordinalscore()
,
step_other()
,
step_regex()
,
step_relevel()
,
step_time()
,
step_unknown()
,
step_unorder()
Examples
data(Sacramento, package = "modeldata")
# convert factor to string to demonstrate
Sacramento$city <- as.character(Sacramento$city)
rec <- recipe(~ city + zip, data = Sacramento)
make_factor <- rec %>%
step_string2factor(city)
make_factor <- prep(make_factor,
training = Sacramento
)
make_factor
#>
#> ── Recipe ────────────────────────────────────────────────────────────────
#>
#> ── Inputs
#> Number of variables by role
#> predictor: 2
#>
#> ── Training information
#> Training data contained 932 data points and no incomplete rows.
#>
#> ── Operations
#> • Factor variables from: city | Trained
# note that `city` is a factor in recipe output
bake(make_factor, new_data = NULL) %>% head()
#> # A tibble: 6 × 2
#> city zip
#> <fct> <fct>
#> 1 SACRAMENTO z95838
#> 2 SACRAMENTO z95823
#> 3 SACRAMENTO z95815
#> 4 SACRAMENTO z95815
#> 5 SACRAMENTO z95824
#> 6 SACRAMENTO z95841
# ...but remains a string in the data
Sacramento %>% head()
#> # A tibble: 6 × 9
#> city zip beds baths sqft type price latitude longitude
#> <chr> <fct> <int> <dbl> <int> <fct> <int> <dbl> <dbl>
#> 1 SACRAMENTO z95838 2 1 836 Residential 59222 38.6 -121.
#> 2 SACRAMENTO z95823 3 1 1167 Residential 68212 38.5 -121.
#> 3 SACRAMENTO z95815 2 1 796 Residential 68880 38.6 -121.
#> 4 SACRAMENTO z95815 2 1 852 Residential 69307 38.6 -121.
#> 5 SACRAMENTO z95824 2 1 797 Residential 81900 38.5 -121.
#> 6 SACRAMENTO z95841 3 1 1122 Condo 89921 38.7 -121.