step_ordinalscore()
creates a specification of a recipe step that will
convert ordinal factor variables into numeric scores.
Usage
step_ordinalscore(
recipe,
...,
role = NA,
trained = FALSE,
columns = NULL,
convert = as.numeric,
skip = FALSE,
id = rand_id("ordinalscore")
)
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
One or more selector functions to choose variables for this step. See
selections()
for more details.- role
Not used by this step since no new variables are created.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- columns
A character string of the selected variable names. This field is a placeholder and will be populated once
prep()
is used.- convert
A function that takes an ordinal factor vector as an input and outputs a single numeric variable.
- skip
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked whenprep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- id
A character string that is unique to this step to identify it.
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Details
Dummy variables from ordered factors with C
levels will create polynomial basis functions with C-1
terms. As an alternative, this step can be used to translate the
ordered levels into a single numeric vector of values that
represent (subjective) scores. By default, the translation uses
a linear scale (1, 2, 3, ... C
) but custom score
functions can also be used (see the example below).
Tidying
When you tidy()
this step, a tibble is returned with
columns terms
and id
:
- terms
character, the selectors or variables selected
- id
character, id of this step
See also
Other dummy variable and encoding steps:
step_bin2factor()
,
step_count()
,
step_date()
,
step_dummy()
,
step_dummy_extract()
,
step_dummy_multi_choice()
,
step_factor2string()
,
step_holiday()
,
step_indicate_na()
,
step_integer()
,
step_novel()
,
step_num2factor()
,
step_other()
,
step_regex()
,
step_relevel()
,
step_string2factor()
,
step_time()
,
step_unknown()
,
step_unorder()
Examples
fail_lvls <- c("meh", "annoying", "really_bad")
ord_data <-
data.frame(
item = c("paperclip", "twitter", "airbag"),
fail_severity = factor(fail_lvls,
levels = fail_lvls,
ordered = TRUE
)
)
model.matrix(~fail_severity, data = ord_data)
#> (Intercept) fail_severity.L fail_severity.Q
#> 1 1 -7.071068e-01 0.4082483
#> 2 1 -7.850462e-17 -0.8164966
#> 3 1 7.071068e-01 0.4082483
#> attr(,"assign")
#> [1] 0 1 1
#> attr(,"contrasts")
#> attr(,"contrasts")$fail_severity
#> [1] "contr.poly"
#>
linear_values <- recipe(~ item + fail_severity, data = ord_data) %>%
step_dummy(item) %>%
step_ordinalscore(fail_severity)
linear_values <- prep(linear_values, training = ord_data)
bake(linear_values, new_data = NULL)
#> # A tibble: 3 × 3
#> fail_severity item_paperclip item_twitter
#> <int> <dbl> <dbl>
#> 1 1 1 0
#> 2 2 0 1
#> 3 3 0 0
custom <- function(x) {
new_values <- c(1, 3, 7)
new_values[as.numeric(x)]
}
nonlin_scores <- recipe(~ item + fail_severity, data = ord_data) %>%
step_dummy(item) %>%
step_ordinalscore(fail_severity, convert = custom)
tidy(nonlin_scores, number = 2)
#> # A tibble: 1 × 2
#> terms id
#> <chr> <chr>
#> 1 fail_severity ordinalscore_eIAmG
nonlin_scores <- prep(nonlin_scores, training = ord_data)
bake(nonlin_scores, new_data = NULL)
#> # A tibble: 3 × 3
#> fail_severity item_paperclip item_twitter
#> <int> <dbl> <dbl>
#> 1 1 1 0
#> 2 3 0 1
#> 3 7 0 0
tidy(nonlin_scores, number = 2)
#> # A tibble: 1 × 2
#> terms id
#> <chr> <chr>
#> 1 fail_severity ordinalscore_eIAmG