step_unknown() creates a specification of a recipe step that will assign
a missing value in a factor level to "unknown".
Usage
step_unknown(
  recipe,
  ...,
  role = NA,
  trained = FALSE,
  new_level = "unknown",
  objects = NULL,
  skip = FALSE,
  id = rand_id("unknown")
)Arguments
- recipe
 A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
 One or more selector functions to choose variables for this step. See
selections()for more details.- role
 Not used by this step since no new variables are created.
- trained
 A logical to indicate if the quantities for preprocessing have been estimated.
- new_level
 A single character value that will be assigned to new factor levels.
- objects
 A list of objects that contain the information on factor levels that will be determined by
prep().- skip
 A logical. Should the step be skipped when the recipe is baked by
bake()? While all operations are baked whenprep()is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUEas it may affect the computations for subsequent operations.- id
 A character string that is unique to this step to identify it.
Value
An updated version of recipe with the new step added to the
sequence of any existing operations.
Details
The selected variables are adjusted to have a new level (given by
new_level) that is placed in the last position.
Note that if the original columns are character, they will be converted to factors by this step.
If new_level is already in the data given to prep(), an error is thrown.
Tidying
When you tidy() this step, a tibble is returned with
columns terms, value , and id:
- terms
 character, the selectors or variables selected
- statistic
 character, the factor levels for the new values
- id
 character, id of this step
See also
Other dummy variable and encoding steps:
step_bin2factor(),
step_count(),
step_date(),
step_dummy(),
step_dummy_extract(),
step_dummy_multi_choice(),
step_factor2string(),
step_holiday(),
step_indicate_na(),
step_integer(),
step_novel(),
step_num2factor(),
step_ordinalscore(),
step_other(),
step_regex(),
step_relevel(),
step_string2factor(),
step_time(),
step_unorder()
Examples
data(Sacramento, package = "modeldata")
rec <-
  recipe(~ city + zip, data = Sacramento) |>
  step_unknown(city, new_level = "unknown city") |>
  step_unknown(zip, new_level = "unknown zip") |>
  prep()
table(bake(rec, new_data = NULL) |> pull(city),
  Sacramento |> pull(city),
  useNA = "always"
) |>
  as.data.frame() |>
  dplyr::filter(Freq > 0)
#>               Var1            Var2 Freq
#> 1         ANTELOPE        ANTELOPE   33
#> 2           AUBURN          AUBURN    5
#> 3     CAMERON_PARK    CAMERON_PARK    9
#> 4       CARMICHAEL      CARMICHAEL   20
#> 5   CITRUS_HEIGHTS  CITRUS_HEIGHTS   35
#> 6             COOL            COOL    1
#> 7  DIAMOND_SPRINGS DIAMOND_SPRINGS    1
#> 8        EL_DORADO       EL_DORADO    2
#> 9  EL_DORADO_HILLS EL_DORADO_HILLS   23
#> 10       ELK_GROVE       ELK_GROVE  114
#> 11         ELVERTA         ELVERTA    4
#> 12       FAIR_OAKS       FAIR_OAKS    9
#> 13          FOLSOM          FOLSOM   17
#> 14      FORESTHILL      FORESTHILL    1
#> 15            GALT            GALT   21
#> 16   GARDEN_VALLEY   GARDEN_VALLEY    1
#> 17      GOLD_RIVER      GOLD_RIVER    4
#> 18     GRANITE_BAY     GRANITE_BAY    3
#> 19       GREENWOOD       GREENWOOD    1
#> 20         LINCOLN         LINCOLN   22
#> 21          LOOMIS          LOOMIS    2
#> 22          MATHER          MATHER    1
#> 23    MEADOW_VISTA    MEADOW_VISTA    1
#> 24 NORTH_HIGHLANDS NORTH_HIGHLANDS   21
#> 25      ORANGEVALE      ORANGEVALE   11
#> 26          PENRYN          PENRYN    1
#> 27     PLACERVILLE     PLACERVILLE   10
#> 28   POLLOCK_PINES   POLLOCK_PINES    3
#> 29  RANCHO_CORDOVA  RANCHO_CORDOVA   28
#> 30  RANCHO_MURIETA  RANCHO_MURIETA    3
#> 31       RIO_LINDA       RIO_LINDA   13
#> 32         ROCKLIN         ROCKLIN   17
#> 33       ROSEVILLE       ROSEVILLE   48
#> 34      SACRAMENTO      SACRAMENTO  438
#> 35    WALNUT_GROVE    WALNUT_GROVE    1
#> 36 WEST_SACRAMENTO WEST_SACRAMENTO    3
#> 37          WILTON          WILTON    5
tidy(rec, number = 1)
#> # A tibble: 1 × 3
#>   terms value        id           
#>   <chr> <chr>        <chr>        
#> 1 city  unknown city unknown_evI1V
