step_rename()
creates a specification of a recipe step that will add
variables using dplyr::rename()
.
Usage
step_rename(
recipe,
...,
role = "predictor",
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("rename")
)
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
One or more unquoted expressions separated by commas. See
dplyr::rename()
where the convention isnew_name = old_name
.- role
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- inputs
Quosure(s) of
...
.- skip
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked whenprep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- id
A character string that is unique to this step to identify it.
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Details
When an object in the user's global environment is referenced in
the expression defining the new variable(s), it is a good idea to use
quasiquotation (e.g. !!
) to embed the value of the object in the
expression (to be portable between sessions).
Tidying
When you tidy()
this step, a tibble is returned with
columns terms
, value
, and id
:
- terms
character, the selectors or variables selected
- value
character,
rename
expression- id
character, id of this step
See also
Other dplyr steps:
step_arrange()
,
step_filter()
,
step_mutate()
,
step_mutate_at()
,
step_rename_at()
,
step_sample()
,
step_select()
,
step_slice()
Examples
recipe(~., data = iris) %>%
step_rename(Sepal_Width = Sepal.Width) %>%
prep() %>%
bake(new_data = NULL) %>%
slice(1:5)
#> # A tibble: 5 × 5
#> Sepal.Length Sepal_Width Petal.Length Petal.Width Species
#> <dbl> <dbl> <dbl> <dbl> <fct>
#> 1 5.1 3.5 1.4 0.2 setosa
#> 2 4.9 3 1.4 0.2 setosa
#> 3 4.7 3.2 1.3 0.2 setosa
#> 4 4.6 3.1 1.5 0.2 setosa
#> 5 5 3.6 1.4 0.2 setosa
vars <- c(var1 = "cyl", var2 = "am")
car_rec <-
recipe(~., data = mtcars) %>%
step_rename(!!!vars)
car_rec %>%
prep() %>%
bake(new_data = NULL)
#> # A tibble: 32 × 11
#> mpg var1 disp hp drat wt qsec vs var2 gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ℹ 22 more rows
car_rec %>%
tidy(number = 1)
#> # A tibble: 2 × 3
#> terms value id
#> <chr> <chr> <chr>
#> 1 var1 "\"cyl\"" rename_sfgIN
#> 2 var2 "\"am\"" rename_sfgIN