step_arrange()
creates a specification of a recipe step that will sort
rows using dplyr::arrange()
.
Usage
step_arrange(
recipe,
...,
role = NA,
trained = FALSE,
inputs = NULL,
skip = FALSE,
id = rand_id("arrange")
)
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
Comma separated list of unquoted variable names. Use `desc()“ to sort a variable in descending order. See
dplyr::arrange()
for more details.- role
Not used by this step since no new variables are created.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- inputs
Quosure of values given by
...
.- skip
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked whenprep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- id
A character string that is unique to this step to identify it.
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Details
When an object in the user's global environment is
referenced in the expression defining the new variable(s),
it is a good idea to use quasiquotation (e.g. !!!
)
to embed the value of the object in the expression (to
be portable between sessions). See the examples.
Tidying
When you tidy()
this step, a tibble is returned with
columns terms
and id
:
- terms
character, the selectors or variables selected
- id
character, id of this step
See also
Other row operation steps:
step_filter()
,
step_impute_roll()
,
step_lag()
,
step_naomit()
,
step_sample()
,
step_shuffle()
,
step_slice()
Other dplyr steps:
step_filter()
,
step_mutate()
,
step_mutate_at()
,
step_rename()
,
step_rename_at()
,
step_sample()
,
step_select()
,
step_slice()
Examples
rec <- recipe(~., data = iris) %>%
step_arrange(desc(Sepal.Length), 1 / Petal.Length)
prepped <- prep(rec, training = iris %>% slice(1:75))
tidy(prepped, number = 1)
#> # A tibble: 2 × 2
#> terms id
#> <chr> <chr>
#> 1 desc(Sepal.Length) arrange_MuJac
#> 2 1/Petal.Length arrange_MuJac
library(dplyr)
dplyr_train <-
iris %>%
as_tibble() %>%
slice(1:75) %>%
dplyr::arrange(desc(Sepal.Length), 1 / Petal.Length)
rec_train <- bake(prepped, new_data = NULL)
all.equal(dplyr_train, rec_train)
#> [1] TRUE
dplyr_test <-
iris %>%
as_tibble() %>%
slice(76:150) %>%
dplyr::arrange(desc(Sepal.Length), 1 / Petal.Length)
rec_test <- bake(prepped, iris %>% slice(76:150))
all.equal(dplyr_test, rec_test)
#> [1] TRUE
# When you have variables/expressions, you can create a
# list of symbols with `rlang::syms()`` and splice them in
# the call with `!!!`. See https://tidyeval.tidyverse.org
sort_vars <- c("Sepal.Length", "Petal.Length")
qq_rec <-
recipe(~., data = iris) %>%
# Embed the `values` object in the call using !!!
step_arrange(!!!syms(sort_vars)) %>%
prep(training = iris)
tidy(qq_rec, number = 1)
#> # A tibble: 2 × 2
#> terms id
#> <chr> <chr>
#> 1 Sepal.Length arrange_gWfAl
#> 2 Petal.Length arrange_gWfAl