step_geodist() creates a specification of a recipe step that will
calculate the distance between points on a map to a reference location.
Usage
step_geodist(
  recipe,
  lat = NULL,
  lon = NULL,
  role = "predictor",
  trained = FALSE,
  ref_lat = NULL,
  ref_lon = NULL,
  is_lat_lon = TRUE,
  log = FALSE,
  name = "geo_dist",
  columns = NULL,
  keep_original_cols = TRUE,
  skip = FALSE,
  id = rand_id("geodist")
)Arguments
- recipe
 A recipe object. The step will be added to the sequence of operations for this recipe.
- lon, lat
 Selector functions to choose which variables are used by the step. See
selections()for more details.- role
 For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.
- trained
 A logical to indicate if the quantities for preprocessing have been estimated.
- ref_lon, ref_lat
 Single numeric values for the location of the reference point.
- is_lat_lon
 A logical: Are coordinates in latitude and longitude? If
TRUEthe Haversine formula is used and the returned result is meters. IfFALSEthe Pythagorean formula is used. Default isTRUEand for recipes created from previous versions of recipes, a value ofFALSEis used.- log
 A logical: should the distance be transformed by the natural log function?
- name
 A single character value to use for the new predictor column. If a column exists with this name, an error is issued.
- columns
 A character string of the selected variable names. This field is a placeholder and will be populated once
prep()is used.- keep_original_cols
 A logical to keep the original variables in the output. Defaults to
TRUE.- skip
 A logical. Should the step be skipped when the recipe is baked by
bake()? While all operations are baked whenprep()is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUEas it may affect the computations for subsequent operations.- id
 A character string that is unique to this step to identify it.
Value
An updated version of recipe with the new step added to the
sequence of any existing operations.
Details
step_geodist uses the Pythagorean theorem to calculate Euclidean distances
if is_lat_lon is FALSE. If is_lat_lon is TRUE, the Haversine formula is
used to calculate the great-circle distance in meters.
Tidying
When you tidy() this step, a tibble is returned with
columns latitude, longitude, ref_latitude, ref_longitude,
is_lat_lon, name , and id:
- latitude
 character, name of latitude variable
- longitude
 character, name of longitude variable
- ref_latitude
 numeric, location of latitude reference point
- ref_longitude
 numeric, location of longitude reference point
- is_lat_lon
 character, the summary function name
- name
 character, name of resulting variable
- id
 character, id of this step
See also
Other multivariate transformation steps:
step_classdist(),
step_classdist_shrunken(),
step_depth(),
step_ica(),
step_isomap(),
step_kpca(),
step_kpca_poly(),
step_kpca_rbf(),
step_mutate_at(),
step_nnmf(),
step_nnmf_sparse(),
step_pca(),
step_pls(),
step_ratio(),
step_spatialsign()
Examples
data(Smithsonian, package = "modeldata")
# How close are the museums to Union Station?
near_station <- recipe(~., data = Smithsonian) |>
  update_role(name, new_role = "location") |>
  step_geodist(
    lat = latitude, lon = longitude, log = FALSE,
    ref_lat = 38.8986312, ref_lon = -77.0062457,
    is_lat_lon = TRUE
  ) |>
  prep(training = Smithsonian)
bake(near_station, new_data = NULL) |>
  arrange(geo_dist)
#> # A tibble: 20 × 4
#>    name                                     latitude longitude geo_dist
#>    <chr>                                       <dbl>     <dbl>    <dbl>
#>  1 National Postal Museum                       38.9     -77.0     367.
#>  2 Renwick Gallery                              38.9     -77.0     932.
#>  3 National Museum of the American Indian       38.9     -77.0    1571.
#>  4 Smithsonian American Art Museum              38.9     -77.0    1636.
#>  5 National Portrait Gallery                    38.9     -77.0    1646.
#>  6 National Air and Space Museum                38.9     -77.0    1796.
#>  7 Hirshhorn Museum and Sculpture Garden        38.9     -77.0    2008.
#>  8 National Museum of Natural History           38.9     -77.0    2073.
#>  9 Arthur M. Sackler Gallery                    38.9     -77.0    2108.
#> 10 Arts and Industries Building                 38.9     -77.0    2124.
#> 11 Smithsonian Institution Building             38.9     -77.0    2193.
#> 12 National Museum of African Art               38.9     -77.0    2202.
#> 13 Freer Gallery of Art                         38.9     -77.0    2266.
#> 14 National Museum of American History          38.9     -77.0    2393.
#> 15 National Museum of African American His…     38.9     -77.0    2611.
#> 16 National Zoological Park                     38.9     -77.1    5246.
#> 17 Anacostia Community Museum                   38.9     -77.0    5332.
#> 18 Steven F. Udvar-Hazy Center                  38.9     -77.4   38111.
#> 19 George Gustav Heye Center                    40.7     -74.0  324871.
#> 20 Cooper Hewitt, Smithsonian Design Museum     40.8     -74.0  334041.
tidy(near_station, number = 1)
#> # A tibble: 1 × 7
#>   latitude longitude ref_latitude ref_longitude is_lat_lon name   id   
#>   <chr>    <chr>            <dbl>         <dbl> <lgl>      <chr>  <chr>
#> 1 latitude longitude         38.9         -77.0 TRUE       geo_d… geod…
