step_ica()
creates a specification of a recipe step that will convert
numeric data into one or more independent components.
Usage
step_ica(
recipe,
...,
role = "predictor",
trained = FALSE,
num_comp = 5,
options = list(method = "C"),
seed = sample.int(10000, 5),
res = NULL,
columns = NULL,
prefix = "IC",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("ica")
)
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
One or more selector functions to choose variables for this step. See
selections()
for more details.- role
For model terms created by this step, what analysis role should they be assigned? By default, the new columns created by this step from the original variables will be used as predictors in a model.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- num_comp
The number of components to retain as new predictors. If
num_comp
is greater than the number of columns or the number of possible components, a smaller value will be used. Ifnum_comp = 0
is set then no transformation is done and selected variables will stay unchanged, regardless of the value ofkeep_original_cols
.- options
A list of options to
fastICA::fastICA()
. No defaults are set here. Note that the argumentsX
andn.comp
should not be passed here.- seed
A single integer to set the random number stream prior to running ICA.
- res
The
fastICA::fastICA()
object is stored here once this preprocessing step has be trained byprep()
.- columns
A character string of the selected variable names. This field is a placeholder and will be populated once
prep()
is used.- prefix
A character string for the prefix of the resulting new variables. See notes below.
- keep_original_cols
A logical to keep the original variables in the output. Defaults to
FALSE
.- skip
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked whenprep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- id
A character string that is unique to this step to identify it.
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Details
Independent component analysis (ICA) is a transformation of a group of variables that produces a new set of artificial features or components. ICA assumes that the variables are mixtures of a set of distinct, non-Gaussian signals and attempts to transform the data to isolate these signals. Like PCA, the components are statistically independent from one another. This means that they can be used to combat large inter-variables correlations in a data set. Also like PCA, it is advisable to center and scale the variables prior to running ICA.
This package produces components using the "FastICA" methodology (see reference below). This step requires the dimRed and fastICA packages. If not installed, the step will stop with a note about installing these packages.
The argument num_comp
controls the number of components that will be retained
(the original variables that are used to derive the components are removed from
the data). The new components will have names that begin with prefix
and a
sequence of numbers. The variable names are padded with zeros. For example, if
num_comp < 10
, their names will be IC1
- IC9
. If num_comp = 101
,
the names would be IC1
- IC101
.
Tidying
When you tidy()
this step, a tibble is returned with
columns terms
, component
, value
, and id
:
- terms
character, the selectors or variables selected
- component
character, name of component
- value
numeric, the loading
- id
character, id of this step
Tuning Parameters
This step has 1 tuning parameters:
num_comp
: # Components (type: integer, default: 5)
References
Hyvarinen, A., and Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4-5), 411-430.
See also
Other multivariate transformation steps:
step_classdist()
,
step_classdist_shrunken()
,
step_depth()
,
step_geodist()
,
step_isomap()
,
step_kpca()
,
step_kpca_poly()
,
step_kpca_rbf()
,
step_mutate_at()
,
step_nnmf()
,
step_nnmf_sparse()
,
step_pca()
,
step_pls()
,
step_ratio()
,
step_spatialsign()
Examples
if (FALSE) {
# from fastICA::fastICA
set.seed(131)
S <- matrix(runif(400), 200, 2)
A <- matrix(c(1, 1, -1, 3), 2, 2, byrow = TRUE)
X <- as.data.frame(S %*% A)
tr <- X[1:100, ]
te <- X[101:200, ]
rec <- recipe(~., data = tr)
ica_trans <- step_center(rec, V1, V2)
ica_trans <- step_scale(ica_trans, V1, V2)
ica_trans <- step_ica(ica_trans, V1, V2, num_comp = 2)
ica_estimates <- prep(ica_trans, training = tr)
ica_data <- bake(ica_estimates, te)
plot(te$V1, te$V2)
plot(ica_data$IC1, ica_data$IC2)
tidy(ica_trans, number = 3)
tidy(ica_estimates, number = 3)
}