step_BoxCox()
creates a specification of a recipe step that will transform
data using a Box-Cox transformation.
Arguments
- recipe
A recipe object. The step will be added to the sequence of operations for this recipe.
- ...
One or more selector functions to choose variables for this step. See
selections()
for more details.- role
Not used by this step since no new variables are created.
- trained
A logical to indicate if the quantities for preprocessing have been estimated.
- lambdas
A numeric vector of transformation values. This is
NULL
until computed byprep()
.- limits
A length 2 numeric vector defining the range to compute the transformation parameter lambda.
- num_unique
An integer to specify minimum required unique values to evaluate for a transformation.
- skip
A logical. Should the step be skipped when the recipe is baked by
bake()
? While all operations are baked whenprep()
is run, some operations may not be able to be conducted on new data (e.g. processing the outcome variable(s)). Care should be taken when usingskip = TRUE
as it may affect the computations for subsequent operations.- id
A character string that is unique to this step to identify it.
Value
An updated version of recipe
with the new step added to the
sequence of any existing operations.
Details
The Box-Cox transformation, which requires a strictly positive variable, can be used to rescale a variable to be more similar to a normal distribution. In this package, the partial log-likelihood function is directly optimized within a reasonable set of transformation values (which can be changed by the user).
This transformation is typically done on the outcome variable using the residuals for a statistical model (such as ordinary least squares). Here, a simple null model (intercept only) is used to apply the transformation to the predictor variables individually. This can have the effect of making the variable distributions more symmetric.
If the transformation parameters are estimated to be very
closed to the bounds, or if the optimization fails, a value of
NA
is used and no transformation is applied.
Tidying
When you tidy()
this step, a tibble is returned with
columns terms
, value
, and id
:
- terms
character, the selectors or variables selected
- value
numeric, the lambda estimate
- id
character, id of this step
References
Sakia, R. M. (1992). The Box-Cox transformation technique: A review. The Statistician, 169-178..
See also
Other individual transformation steps:
step_YeoJohnson()
,
step_bs()
,
step_harmonic()
,
step_hyperbolic()
,
step_inverse()
,
step_invlogit()
,
step_log()
,
step_logit()
,
step_mutate()
,
step_ns()
,
step_percentile()
,
step_poly()
,
step_relu()
,
step_sqrt()
Examples
rec <- recipe(~., data = as.data.frame(state.x77))
bc_trans <- step_BoxCox(rec, all_numeric())
bc_estimates <- prep(bc_trans, training = as.data.frame(state.x77))
#> Warning: Non-positive values in selected variable.
#> Warning: No Box-Cox transformation could be estimated for: `Frost`.
bc_data <- bake(bc_estimates, as.data.frame(state.x77))
plot(density(state.x77[, "Illiteracy"]), main = "before")
plot(density(bc_data$Illiteracy), main = "after")
tidy(bc_trans, number = 1)
#> # A tibble: 1 × 3
#> terms value id
#> <chr> <dbl> <chr>
#> 1 all_numeric() NA BoxCox_rDslY
tidy(bc_estimates, number = 1)
#> # A tibble: 7 × 3
#> terms value id
#> <chr> <dbl> <chr>
#> 1 Population 0.000966 BoxCox_rDslY
#> 2 Income 0.524 BoxCox_rDslY
#> 3 Illiteracy -0.379 BoxCox_rDslY
#> 4 Life Exp 4.59 BoxCox_rDslY
#> 5 Murder 0.606 BoxCox_rDslY
#> 6 HS Grad 1.92 BoxCox_rDslY
#> 7 Area 0.250 BoxCox_rDslY